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In this paper, we provide an algorithm and general framework for the simulation of photons passing 
through linear optical interferometers. Given n photons at the input of an m-mode interferometer, our 
algorithm computes the probabilities of all possible output states with time complexity O  

(
n
(n+m−1

m−1

))
, 

linear in the number of output states 
(n+m−1

m−1

)
. It outperforms the permanent-based method by an 

exponential factor, and for the restricted problem of computing the probability for one given output it 
improves the time complexity over the state-of-the-art for the permanent of matrices with multiple rows 
or columns, with a tradeoff in the memory usage. Our algorithm also has additional versatility by virtue 
of its use of memorisation – the storing of intermediate results – which is advantageous in situations 
where several input states may be of interest. Additionally it allows for hybrid simulations, in which 
outputs are sampled from output states whose probability exceeds a given threshold, or from a restricted 
set of states. We consider a concrete, optimised implementation, and we benchmark the efficiency of our 
approach compared to existing tools.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In quantum computation one encodes information into the 
states of quantum systems – photons, atoms, ions, etc. – which 
can then processed by evolving and manipulating those systems 
according to the laws of quantum mechanics. It is by now well-
known that the paradigm opens vast possibilities for exploiting 
non-classical behaviours available to quantum systems in order to 
process information in radically new ways that can lead to a va-
riety of quantum advantages including computational speedups [1], 
enhanced security [2], more efficient communication [3], and the 
potential for reduced energy consumption [4,5], when compared to 
classical information processing.

The development quantum technologies aiming to leverage 
such advantages have been advancing at pace over the past num-
ber of years. A variety of different hardwares, each using different 
physical supports for the quantum information, are being pur-
sued. Among these, photonic hardware has a privileged role in 
the sense that regardless of hardware choice it will eventually be 
necessary to network quantum processors, and as the only viable 
support for communicating quantum information it is inevitable 
that some quantum information must eventually be treated pho-
tonically. Photons have a number of other desirable features too, 
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including an absence of decoherence in transparent media – i.e. a 
capacity to reliably maintain their quantum states –, reduced cryo-
genic requirements compared to other hardware approaches, and 
good prospects for scalability due to compatibility with the exist-
ing semiconductor industry [6].

Photonic quantum technologies consisting of single-photon 
sources, which are coupled to linear optical interferometers – 
which may be parametrisable and take the form of integrated 
circuits –, which are coupled in turn to photon detectors, offer 
a promising route to implementing quantum computation. They 
enable both non-universal models of quantum computation [7], 
which have led to laboratory demonstrations that claim to show 
quantum computational advantages with today’s technology [8,9], 
as well as models for achieving universal [10], and fault-tolerant 
quantum computation [11].

To accompany the technological developments in photonic 
quantum computing it is also important to have access to tools for 
design, testing, and experimenting with algorithms, protocols, and 
schemes. In this respect, the classical simulation of photonic quan-
tum computing platforms has become an increasingly important 
problem. Of course, one of the main interests of quantum compu-
tation is that it quickly becomes unfeasible for classical processors 
to simulate. Yet there are clear benefits to achieving optimal clas-
sical simulation within the theoretical limits. This can aid in de-
signing and perfecting interferometers that generate specific logic 
gates, entangled states, and other building-block components of 
quantum computers. It can provide both development and verifi-
cation tools for algorithm and software development. Furthermore 
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it can help to define the performance boundaries separating the 
quantum from the classical computational paradigm.

Two special cases are of particular interest: strong simulation, 
where a classical program computes the complete quantum state 
obtained at the outputs of a photonic circuit; and weak simulation, 
or sampling, where the classical program emulates the probabilis-
tic behaviour that would be observed at the outputs. The task of 
predicting, with classical algorithms and computers, the output 
states for photons passing through interferometers relates to the 
#P -hard problem of calculating the permanents of complex matri-
ces [12] associated with the interferometer [13].

In order to perform strong simulation, one solution is therefore 
to reuse algorithms originally designed for computing permanents. 
The state-of-the-art classical algorithms for computation of the 
permanent of a complex matrix are those due to Ryser [14] and 
Glynn [15], while the state-of-the-art classical algorithms for bo-
son sampling (essentially the weak simulation problem) are those 
due to Clifford and Clifford [16,17]. As the strong simulation of 
linear optical circuits involves the permanent computation of ma-
trices with repeated rows or columns, algorithms with a better 
complexity [18] than Ryser’s or Glynn’s can be used.

On the other hand and independently from permanents, the 
folklore of linear optics is aware of informal, back-of-the-envelope 
techniques for running fixed-photon number simulations. The goal 
of this paper is to formalize and analyze these folklore techniques 
and provide a comparison with the algorithms for the permanents 
of complex matrices. In particular, we propose a framework for 
strong simulation, amenable to weak simulation, which addition-
ally allow for hybrid forms of simulation between these two partic-
ular cases. Accross the paper, we shall be using the acronym SLOS, 
standing for Strong Linear Optical Simulator. We derive an algorithm 
for computing the permanent of a complex matrix with repeated 
rows that improves the state-of-the-art [18] time complexity, with 
a tradeoff in memory. We detail optimised implementations of our 
algorithms that can be found in the QuandeLibC library1 (which 
is also integrated in the open-source software platform Perceval
[19]). We benchmark the performance of our algorithms, compar-
ing them to implementations of the Glynn and Ryser algorithms in 
the Walrus library [20], as well as implementations in QuandeLibC

of these algorithms, which appear to be more efficient, and of the 
Clifford and Clifford algorithms also in QuandeLibC.

Contributions A preliminary version of this work has been pre-
sented at IEEE Quantum Computing and Engineering [21]. The 
main contributions of this paper are three Strong Linear Optical 
Simulators (SLOS), and can be summarised as follows:

• An algorithm, labelled SLOS_full, for computing the full 
output amplitude distribution of a linear optical circuit for 
a given input. Although this method would be naturally de-
scribed in physics textbooks, to the authors’ knowledge this is 
the first complexity study and explicit implementation of that 
method. The time complexity is O  

(
n
(n+m−1

m−1

))
, and so is linear 

in the number of output states 
(n+m−1

m−1

)
. The full distribution 

can be obtained in an optimal space of O
(n+m−1

m−1

)
.

• A generalised strong simulation algorithm, labelled SLOS_gen, 
for computing the amplitudes of any set of outputs from any 
set of inputs. For one input, SLOS_gen has the same time 
complexity as SLOS_full for the full output distribution, 
and improves the state-of-the-art [18] for the specific case 
of a single output, giving a new upper bound for computing a 
permanent with repeated rows or columns.

1 On Github at https://github .com /Quandela /QuandeLibC.
2

• A hybrid algorithm that can combine both weak and strong 
simulation for many inputs and outputs, labelled SLOS_hyb.
SLOS_hyb can sample from a set of outputs whose proba-
bility exceeds a given threshold, or even sample among a re-
stricted set of states. SLOS_hyb can both perform both weak 
sampling and strong simulation (as SLOS_gen).

• Detailed optimised implementations of both SLOS_full and
SLOS_gen. The implementations are open-source and avail-
able in the QuandeLibC library.

• Practical performance benchmarking of the algorithm in a 
generic example of a quantum machine learning algorithm 
[22], where it is seen to give a considerable practical edge over 
the permanent-based approach to simulation.

Plan The paper is structured as follows: in Section 2 we provide 
some background on linear optical simulation, and in particular 
the specific problems we focused on are set up in Section 2.4, with 
illustrations of typical use cases. In Section 3 we introduce the al-
gorithms and their complexity analysis, summarised in Table 1. The 
practical implementation and optimisation are presented in Sec-
tion 4, while benchmarks with the permanent-based model are in 
Section 5. We finally conclude and discuss in Section 6.

2. Simulating linear optical circuits

In Section 2.1, we set up some formalism and notational con-
ventions to be used throughout the paper. After briefly explaining 
the hardness of LO-circuit simulation in Section 2.2, we present 
and define the weak and strong simulation problems in Sec-
tion 2.3. In Section 2.4, we present the two strong simulation 
problems that we propose to answer in Section 3.

2.1. Formalism of linear optical circuits and notation

Throughout this paper, we will be considering n indistinguish-
able photons over m modes. Typically these are spatial modes, but 
they could in principle also correspond to other discrete degrees 
of freedom such as polarisation, frequency, or time-bins [23,24]. 
States of the system will be Fock states or their superpositions 
and we write |s1, s2, . . . , sm〉 to denote the Fock state with si
photons in mode i. Sometimes it will be interesting to consider 
states containing less than n photons, so we introduce the nota-
tion |s1, s2, . . . , sm〉k to describe a state with 

∑m
i=1 si = k photons, 

sometimes shortening this to |s〉k
m . The vacuum state, with no pho-

ton in m modes, will be denoted as |0〉m . We also introduce F k
m

as the set of the Fock states of k photons into m modes, so that 
F k

m =
{
|s1, s2, . . . , sm〉k

∣∣∣si ∈N
}

. It is known that #F k
m = (k+m−1

m−1

)
, 

as it is exactly the number of ways to put k indistinguishable balls 
into m distinguishable bins [25]. For readability and as m will be a 
fixed parameter, that number will be denoted as Mk .

It is standard in the second quantisation formalism to associate 
each mode i with a creation operator â†

i : F k
m → F k+1

m acting as 
follows:

â†
i |s1, . . . , si, . . . , sm〉k = √

si + 1 |s1, . . . , si + 1, . . . , sm〉k+1

This paper focuses only on linear optical operations, for which 
the transformations on the creation operators are described by 
a unitary matrix U = (ui, j) of size m × m such that â†

p �→∑m
i=1 ui,p â†

i . As shown in [26], every such unitary can be imple-
mented by a linear optical circuit of m spatial modes, with only 
phase shifters and beamsplitters [23] as linear optical components. 
We will call such a circuit an LO-circuit.

Each unitary matrix U : m × m acting on the vector of cre-
ation operators can be associated with a unitary operator UF on 
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Hm = ⊕+∞
k=0H

k
m where Hk

m is the Hilbert space generated by the 
elements of F k

m [7,13]. UF |s〉k
m will represent the state obtained 

when the state |s〉k
m is the input of an LO-circuit implementing U

and can be obtained with:

UF |s〉n
m =

m∏
p=1

1√
sp !

(
m∑

i=1

ui,p â†
i

)sp

|0〉m (1)

Following our notation, n
m〈t|UF |s〉n

m is the amplitude assigned 
to the state |t〉n

m within the overall output state UF |s〉n
m .

2.2. Hardness of linear optical simulations

Given a matrix M : n × n, the permanent of M is defined as 
follows:

Perm(M) =
∑
σ∈Sn

n∏
i=1

mi,σ (i).

Efficiently computing the permanent is crucial in evaluating linear 
optical transformations, as we can show that:

n
m〈t|UF |s〉n

m = Perm
(
U |s〉,|t〉

)
√

s1! . . . sm!t1! . . . tm! , (2)

where U |s〉,|t〉 is obtained from the unitary U by repeating si times 
its ith column and t j times its jth row [27,28]. We return to this 
in Section 2.4.

It is known that computing a permanent of a general complex 
matrix [12] or even subclasses of real orthogonal matrices [29]
is a #P -hard problem. The fastest known algorithms [14,15] for 
computing a permanent of a general matrix of size n, with some 
pre-computation allowed [30], are in O (n2n).

For computing the permanent in Equation (2), the redundancy 
of the rows and columns in U |s〉,|t〉 can be taken advantage of, giv-
ing a faster algorithm [18]. More generally, for an output state 
|t1, ..., tm〉, the permanent can be computed in:

O

⎛
⎝n

∏m
i=1(ti + 1)

min
tl 
=0

(tl + 1)

⎞
⎠ (3)

operations. Note that this bound is equal to O  
(
n2n−1

)
in the worst 

case, when there is at most one photon per mode, and equal to 
O  (n) in the best case, when only one mode is occupied.

2.3. Weak and strong simulation

When considering a model for a biased coin, two strategies can 
be followed. Either one can try to literally emulate the probabilis-
tic behaviour of the coin and have a protocol answering “head” or 
“tail” with the appropriate probabilities, or to more fully charac-
terise the behaviour and by listing the (two) precise probabilities 
for “head” and “tail”. The former approach is called weak simulation
while the latter is strong simulation.

Weak simulation Weak simulation of LO-circuits is the classical 
sampling from their output distribution, also known as the Boson 
Sampling problem [7]. Given an input |s〉n

m and a LO-circuit imple-
menting a unitary U , we would like to sample an output |t〉n

m from 
the distribution DU (s) =

{∣∣〈t|UF |s〉∣∣2
, |t〉 ∈ F n

m

}
.

Under some assumptions, weak simulation has been shown to 
be classically hard [7], as it would imply P #P = B P P N P leading 
to a collapse of the polynomial hierarchy of complexity classes 
to the third level. Therefore, Boson Sampling is a good candidate 
3

for quantum advantage, as a linear optical computer with single-
photon inputs can naturally sample from DU (s). It was shown that 
weak simulation could be done in O (n2n + mn2) [16], which was 
further improved to O (n1.69n) on average when m = n [17] thanks 
to a more efficient way to compute permanents with repeated 
rows.

Even though weak simulation is not the main focus of the pa-
per, it can be recovered as a by-product of the general algorithm
SLOS_hyb presented in Section 3.3.

Strong simulation Strong simulation of LO-circuits is the classical 
computation of the output amplitudes (or the probabilities): Given 
an input |s〉n

m and an LO-circuit implementing a unitary U , we 
would like to compute the amplitudes 〈t|UF |s〉 , or the probabil-

ities 
∣∣〈t|UF |s〉∣∣2 with |t〉 ∈ F n

m .
As explained in Section 2.2, we can directly compute them by 

computing the permanents of U |s〉,|t〉 . Therefore, the complexity of 
computing one amplitude or probability is exactly the complexity 
of computing one permanent.

In this paper, we propose a procedure directly computing 
the amplitudes of several outputs or inputs, which is more effi-
cient than computing them separately and independently, cf. Sec-

tions 3.1 and 3.2, only needing O  
(∑m

i=1 ti
∏

j 
=i(t j + 1)
)

opera-

tions for one output, as shown in Section 3.2.3 and summarised 
in Table 1. We therefore can efficiently solve two kinds of strong 
simulation problems, which we set out in Section 2.4.

2.4. SLOS problems: two strong linear optical simulation problems

This section will introduce the two classes LO simulation prob-
lems summarised in Fig. 1. For each class, we provide concrete 
examples and typical use-cases. Each problem has a proposed so-
lution described in Section 3 and summarised in Fig. 2.

Problem 1: full amplitude list simulation Given an input |s〉n
m and an 

LO-circuit of m modes implementing a unitary matrix U : m × m, 
what is the output state UF |s〉n

m? Equivalently, what is the full 
amplitude list 

{〈t|UF |s〉 , |t〉 ∈ F n
m

}
? This situation is schematised 

in Fig. 1a.

Example For instance, we can consider an LO-circuit of three 
modes implementing a unitary U , with an input of two photons 
|1,1,0〉. In that problem, we would like to compute every output 
state of F 2

3 , meaning we would like to know the output:

UF |1,1,0〉 = α1 |2,0,0〉 + α2 |0,2,0〉 + α3 |0,0,2〉 + α4 |1,1,0〉
+ α5 |1,0,1〉 + α6 |0,1,1〉 .

Notice that we can compute each amplitude αi of an output 
state |t〉 by computing the permanent of U |1,1,0〉,|t〉 , as defined 
in Section 2.2. To compute α3, we would need to compute 
Perm(U |1,1,0〉,|0,0,2〉). By taking the first and second column of U , ⎛
⎝u1,1 u1,2

u2,1 u2,2
u3,1 u3,2

⎞
⎠ and repeating two times the third row to form a 

U |1,1,0〉,|0,0,2〉 , we have:

α3 = Perm(U |1,1,0〉,|0,0,2〉)√
2! =

Perm

(
u3,1 u3,2
u3,1 u3,2

)
√

2

= √
2 × u3,1 × u3,2



N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Fig. 1. Application Schemes of Problem 1 and Problem 2. • is a chosen number of photons, while ∗ is every possible number.
Typical use-cases As the full amplitude list is a complete descrip-
tion of an LO-circuit and the input can be directly the state right 
after the photon sources, applications for this problem can be both 
practical and theoretical. One can think of:

• Simulate or look for circuits preparing a specific output dis-
tribution like entangled high-dimensional states [31] or Bell 
Measurements [32].

• Check the correctness and noise of experimental circuits with 
the theoretical distribution. One can certify the correctness of 
Boson sampling by computing metrics (such as total varia-
tional distance, bunching probabilities,. . . ) from the statistics 
obtained [33–36].

• Machine Learning algorithms as the approximation of differen-
tial equations of [22], application detailed in Section 5.1.

Problem 2: generic strong simulation Given a set of inputs I, a 
set of outputs O and an LO-circuit of m modes implementing 
a unitary matrix U : m × m, what are the output amplitudes {〈t|UF |s〉 , |s〉 ∈ I, |t〉 ∈O}

?

Typical use-cases Often, only specific outcomes are of interest, so 
the full output distribution of a LO-circuit is not needed. Also, for 
every circuit encoding logic gates or functions in general, we need 
to know the effect of the LO-circuit on each different possible in-
put, so several inputs are needed. Therefore, that problem is very 
general and tackles various applications, in which we can highlight 
two general classes of schemes.

• Post-selected scheme. Presented in Fig. 1c, it consists of only 
considering —or selecting— some inputs and some outputs 
according to some criteria. A canonical example is the im-
plementation of the 2-qubit CNOT-gate of [37]. Working on 6 
modes with 2 photons, the considered input and output states 
are X = {|0,1,0,1,0,0〉 , |0,1,0,0,1,0〉 , |0,0,1,1,0,0〉 ,

|0,0,1,0,1,0〉}. In other words, the circuit is regarded as a 
map restricted on the 4-dimensional subspace C[X] gener-
ated by X , and not the full 21-dimensional H2

6 space. The 
term “postselected” refers to the fact that in general, the out-
put state might have a component orthogonal to C[X] (for 
instance, maybe the state |0,2,0,0,0,0〉 has a non-zero am-
plitude). Such orthogonal components are considered bogus. 
They are ruled out at the end of the computation, when mea-
suring the system.

• Heralded scheme. Presented in Fig. 1b, it consists in design-
ing a LO-circuit that can fail, but for which the failure can be 
decided upon the measurement result of some of the output 
modes. For instance, in [38] a scheme is proposed to imple-
ment the 2-qubit CZ-gate. The 4 input modes can accommo-
date 2, 3 or 4 photons, and the input state is generated with 
{|1,1,1,1〉 , |1,0,1,1〉 , |0,1,1,1〉 , |0,0,1,1〉}. For the output, 
we only consider the cases where the two last modes contain 
a photon: |∗,∗,1,1〉. This scheme is “heralded” in the sense 
4

Fig. 2. Input and Output relations of SLOS_full and SLOS_gen, solution algo-
rithms respectively to the Problem 1 and Problem 2 of Section 2.4.

that the computation only happens on the two first modes: 
the last two modes are just witnesses that the computation 
went well. Unlike the post-selected scheme, measuring these 
two last modes does not destruct possible entanglement on 
the two first modes.

3. SLOS algorithms

We first present SLOS_full in Section 3.1, which computes 
the full distribution of a given input, while also proving its com-
plexity in time of O  (nMn), where Mn = #F n

m = (n+m−1
m−1

)
as dis-

cussed in Section 2.1. It is the setting of Problem 1 in Section 2.4. 
We will then present SLOS_gen in Section 3.2, when sets of in-
puts are outputs are allowed. It is the setting of Problem 2 in 
Section 2.4. We conclude in Section 3.3 with the presentation of
SLOS_hyb, a simulation algorithm parameterised by a general 
cost function, and able to capture not only both weak and strong 
simulation, but also specific, crafted problems.

3.1. SLOS_full: computation of the full output distribution of one 
input

Given an input |s〉n
m = |s1, s2, . . . , sm〉n and a unitary U , UF |s〉n

m
can be computed with Equation (1). As 

∑m
p=1 sp = n, the product 

only contains n non-trivial terms, that can be arbitrary labelled as 
p1, p2, . . . , pn , corresponding to the position of each photon. The 
key idea of SLOS_full, presented in Algorithm 1, is to decom-
pose that product as follows:

m∑
in=1

uin,pn â†
i

⎛
⎝ m∑

in−1=1

uin−1,pn−1 â†
i

⎛
⎝. . .

⎛
⎝ m∑

i1=1

ui1,p1 â†
i |0〉m

⎞
⎠ . . .

⎞
⎠

⎞
⎠

(4)

With this chosen order, we iteratively obtain the output of a state 
with k + 1 photons from the output of a state with k photons. To 
understand more closely how SLOS_full works, let’s first write 
the desired output state as:

UF |s〉n
m = UF

(
â†

pn â†
pn−1 . . . â†

p1 |0〉m∏m √
sp !

)

p=1
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Algorithm 1: SLOS_full with one input |s〉n
m computing the full distribution UF |s〉n

m . Each coefficient 〈t|UF |s〉 will be stored in an 
array UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised 
at 0. For simplicity, the array UF is of size O  

(
( n

m + 1)Mn
)
, even though it could be optimised to O  (Mn−1 + Mn), by reallocating memory and 

erasing the intermediary states, as shown below in the comment.
Global UF
Function SLOS_full(|s〉n

m , U):
UF [|0〉][|0〉] ← 1 ;

IS = [(|0〉0
m , p1

)
, . . . ,

(|s〉n−1
m , pn

)]
; // chosen arbitrarily, see Equation (4)

for k : 0 → n − 1 do
|s〉 , p ← IS [k] ;
for |t〉 ∈ F k do

for i ∈ [m] do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t1, . . . , ti + 1, . . . , tm〉] +=

√
ti + 1

sp + 1
× U [i][l] × UF [|s〉][|t〉] ;

end
// Possible memory optimization here: we don’t need UF [|s〉][|t〉] anymore

end
end
and notice that for k = 0 to n − 1 we have:

UF
(

â†
pk+1

|s〉k
m

)
=

m∑
i=1

ui,pk+1 â†
i

(
UF |s〉k

m

)
(5)

Note that the normalisation factor can either be computed at 
each step k (as in Algorithm 1), or at the end for the final dis-
tribution UF |s〉n

m: in this case, the global normalisation factor is 
1/�m

p=1

√
sp ! (as in Equation (1)).

Following Equation (4) and Equation (5), we obtain the full out-
put distribution of |s〉n

m , along with the full output distribution of 
intermediary states having from 0 to n − 1 photons. We will de-
note these intermediate states as |s〉k

m and they will be stored in 
a list IS of tuples: [(|0〉0

m , p1), . . . , (|s〉n−1
m , pn)] where |s〉k

m is the 
Fock state |s〉k−1

m with one more photon in the mode pk .
In practice, obtaining the full distribution UF |s〉k

m =∑
|t〉∈F k

m
〈t|UF |s〉k

m |t〉 means computing and storing every coef-

ficient 〈t|UF |s〉k
m for |t〉 ∈ F k

m . We store each of them in an 
array, where each coefficient of UF |s〉k

m is used for the com-

putation of UF |s〉k+1
m . Note that in the sum of Equation (5), 

â†
i 〈t|UF |s〉k

m |t〉 = √
ti + 1 〈t|UF |s〉k

m |t1, . . . , ti + 1, . . . , tm〉, which 
adds a new term for 〈t1, . . . , ti + 1, . . . , tm|UF |s〉k+1

m as in the for-
mula of Algorithm 1.

Time complexity SLOS_full computes the full distribution of an 
input |s〉n

m in O (nMn). The complexity can be directly deduced 
from the three “for loops” of Algorithm 1, knowing that #F k

m =(k+m−1
m−1

) = Mk . The total number of operations is:

n−1∑
k=0

mMk = m
n

m
Mn = nMn

The complexity is therefore linear in the number of states, so 
each state needs O (n) operations in average.

Exponential gain from the permanent-based method We would now 
compare that complexity to the permanent-based method, which 
would compute every term independently using the permanent al-
gorithm of [18]. Therefore, we need to sum over all the possible 
outputs states the term n

∏m
i=1(ti+1)

min
tl 
=0

(tl+1)
. To simplify the expression of 

the sum, we will use a lower bound, considering n ≥ 1 so that 
min
tl 
=0

(tl + 1) ≤ n + 1 ≤ 2n. We therefore have the following lower 

bound:
5

1

2

∑
|t〉∈F n

m

m∏
i=1

(ti + 1) ≤
∑

|t〉∈F n
m

n

∏m
i=1(ti + 1)

min
tl 
=0

(tl + 1)

As shown in the Lemma 2 of [17], the sum of the left-hand side is 
equal to 

(2m+n−1
n

)
, giving our lower bound of �

(2m+n−1
n

)
. To com-

pare with the time complexity of SLOS, we can study the ratio 
(2m+n−1

n )
nMn

= 1
n

(2m+n−1
n )

(n+m−1
n )

. By assuming m = θn and for a fixed value θ , 

(cf Corrollary 2 of [17]), we can apply Stirling’s formula to show 
the ratio is �( 1

n ρn
θ ) with ρθ = (2θ+1)2θ+1

(4θ)θ (θ+1)θ+1 , showing the exponen-
tial speedup of SLOS. Note that ρ1 ≈ 1.69, ρ2 ≈ 1.80, and that 
lim

θ→∞ρθ = 2.

Memory complexity At the step k, we need to use a memory of at 
most O  

(
Mk + Mk+1

)
, as we use all the coefficients of UF |s〉k

m to 
compute and store the new coefficients of UF |s〉k+1

m . At the end of 
the step k, we can erase all the coefficients of the step k − 1.

Therefore, at the last step, we have stored at most Mn−1 + Mn ≤
2Mn = O  (Mn) coefficients. Thus, if we allow reallocation, the com-
plexity in memory is in O  (Mn). As we aim for the full distribu-
tion containing Mn amplitudes, we necessarily need a memory of 
O  (Mn). SLOS_full has therefore an optimal complexity in mem-
ory.

It is important to highlight for a simple allocating, we need 
Mn−1 + Mn space which can still be inconvenient for big values 
of n and m. We can reduce the overhead by only allocating the 
memory of UF [|s〉k+1][|t1, . . . , ti + 1, . . . , tm〉] when needed, and 
by erasing coefficients as soon they have been used as in Algo-
rithm 1. We can optimise even more by ordering F k

m so that for 
consecutive |t〉 , the coefficients |t1, . . . , ti + 1, . . . , tm〉 overlap and 
less memory is added at each iteration of a new |t〉 . The memory 
optimisation can also only be done for the last steps as they are 
the most costly.

For faster overhead in time and easier implementation, we 
would rather store all the coefficients of the intermediary states 
without erasing them. This would require to store 

∑n
k=0 Mk =

( n
m + 1)Mn states, which is still feasible for reasonable values of 

m and n.

3.2. SLOS_gen: computation of several outputs for several inputs

The algorithm SLOS_full always computes the full output 
distribution, and does not offer any granularity by restricting the 
set of outputs states. However, often we may not need the full dis-
tribution for a given input. It is the case when we are looking for 
one coefficient or specific coefficients, as for post-selected or her-
alded scheme introduced in Section 2.4.
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Algorithm 2: SLOS_gen with a set of q inputs I and a set of r outputs O. Each coefficient 〈t|U |s〉 will be stored in a dictionary or an 
array UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised 
at 0. For simplicity, the array UF is of size O  

(
q( n

m + 1)Mn)
)
, even though it could be optimised by reallocating memory and erasing 

the intermediary states.
Global UF
Function SLOS_Rec(k, F k+1

SM , U):
if k > 0 then

SLOS_Rec(k − 1, F k
SM , U) ; // Build with Equation (7)

end
for (|s〉 , p) ∈ IS [k] do

for |t〉 ∈ F k+1
SM do

for i ∈ [m] when ti 
= 0 do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t〉] +=

√
ti

sp
× U [i][p] × UF [|s〉][|t1, . . . , ti − 1, . . . , tm〉]

end
end

end
Function SLOS_gen(I, O, U):

UF [|0〉][|0〉] ← 1 ;

IS =
[{(|0〉0

m , pi
1

)}
, . . . ,

{(∣∣si
〉n−1
m , pi

n

)}]
; // As in Algorithm 3

SLOS_Rec(n − 1, O, U) ;
3.2.1. Restriction of the subcomputation space: mask
In order to efficiently restrict the output distribution, we intro-

duce the notion of a mask, a state which will filter out unnecessary 
intermediary states. We define the relation ≤ as: |t〉m ≤ |M〉m ⇔∧m

i=1(ti ≤Mi), and we define F k
≤M = {|t〉∣∣ |t〉 ∈ F k

m, |t〉 ≤ |M〉m

}
. 

For a set of masks SM , we will note as F k
SM all the states we 

compute at the step k.
At the step k of the computation, we compute each coefficient 

as follows:

〈t|UF |s〉k = 1√
spk

∑
i,ti 
=0

√
tiui,pk 〈t1, . . . , ti − 1, . . . , tm|UF |s〉k−1

(6)

As |t〉k ∈ F k
≤M ⇒ {|t1, . . . , ti − 1, . . . , tm〉 , ti 
= 0} ⊂ F k−1

≤M , for 
any mask M, the set {〈t|UF |s〉k, |t〉 ∈ F k

≤M } can be computed with 
{〈t|UF |s〉k−1, |t〉 ∈ F k−1

≤M }. For each k, it is sufficient to compute the 

states F k
SM =

{
F k

≤M
∣∣∣M ∈ SM

}
. The number of intermediary states 

is therefore #F k
SM instead of Mk for the full distribution in Sec-

tion 3.1. Given a set of outputs O = {|o〉n
m , |o〉n

m ∈ F n
m} we would 

like to compute, we can take F k
SM = ∪o∈OF k≤o , so that at the last 

step we have F n
SM =O.

Unlike the iterative presentation of SLOS_full, it is here more 
natural to have a recursive procedure, as we can directly build the 
intermediary states as follows:

F k−1
SM =

{
|t1, . . . , ti − 1, . . . , tm〉 , ti 
= 0, |t〉k

m ∈ F k
SM

}
(7)

This makes it possible to build F k−1
SM from F k

SM on the fly without 
precompiling anything.

3.2.2. The SLOS_gen algorithm
Shown in Algorithm 2, SLOS_gen starts with F n

SM =O. The re-
cursive computation of intermediary states is directly derived from 
Equation (6): SLOS_rec(F k

SM ) computes {〈t|UF |s〉k, |t〉 ∈ F k
SM }

from {〈t|UF |s〉k−1, |t〉 ∈ F k−1
SM } given by SLOS_rec(F k−1

SM ).
However, unlike the case of SLOS_full, we are also comput-

ing the outputs of several input states at the same time. It is in 
fact possible to take advantage of the similarities in the inputs, by 
changing the order of computation of Equation (1).
6

Several inputs Let us consider two inputs |s〉n
m and 

∣∣s′〉n
m , having j

photons in common modes. Without loss of generality, we can 
write them as |d1 + c1, . . . ,dm + cm〉 and 

∣∣d′
1 + c1, . . . ,d′

m + cm
〉
, 

with di, d′
i, ci ≥ 0 and 

∑m
i=1 ci = j. We can therefore first compute 

UF |c1, . . . , cm〉m = ∏m
p=1(

∑n
i=1 ui,p â†

i )
cp |0〉m , common term of 

both UF |s〉n
m and UF

∣∣s′〉n
m . We can notice that |c〉 j

m =∣∣min(s1, s′
1), . . . ,min(sm, s′

m)
〉

and so j = ∑m
i=1 min(si, s′

i).
More generally, with a set of inputs, we can always factor-

ize the common terms, and use it in the computation to reduce 
the number of intermediary states. It is especially efficient when 
the common term is the same for all the inputs, as it is the 
case when we add ancilla photons for all different inputs, as in 
|∗,∗, . . . ,∗,1,1,1〉.

When there are many inputs, we want to build IS that implies 
the minimum number of operations. This time, IS will be a list 
of sets, where IS [k] is the set of tuples 

(∣∣si
〉k
m , pi

k

)
to compute 

at the step k. Let’s note I2 as the set of all distinct pairs of I2. 
If we have p ≥ 2 inputs, then we would choose one of the biggest 
common term among all pairs of I2. Therefore, we would take one 
element of:

argmax
(|s〉,|s′〉)∈I2

m∑
i=1

min(si, s′
i) (8)

We then remove the chosen pair (|s〉 , 
∣∣s′〉) from I, and add 

|min(s1, t1), . . . ,min(sm, tm)〉m both to I and to IS , with arbitrary 
paths from that state to |s〉 and 

∣∣s′〉 . The procedure will continue 
until p = 1, where we will just add the last input in I S , with an ar-
bitrary path, as in Equation (4). The pseudocode is the Algorithm 3.

Example To illustrate the correspondence between I and IS , we 
give the steps for the computing the coefficients associated to 
{|1,0,0,1〉 , |1,1,1,2〉 , |1,1,2,1〉}.

1. This is the initial input to the procedure, and IS is empty: 
I = {|1,0,0,1〉 , |1,1,1,2〉 , |1,1,2,1〉}, IS = [{}, {}, {}, {}, {}]

2. We look for the best common factor between the three 
inputs (the biggest common term of Equation (8)): it is 
|1,1,1,1〉, factor of |1,1,1,2〉 and |1,1,2,1〉. So now I =
{|1,0,0,1〉, |1,1,1,1〉}, and IS is populated with the oper-
ations needed to recover the two elements being factored: 
IS = [{}, {}, {}, {}, {(|1,1,1,1〉 , 4), (|1,1,1,1〉 , 3)}]
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Algorithm 3: Construction of IS . The function path(|t〉 → |s〉) returns an arbitrary path from |t〉 to |s〉 as in Equation (4).
IS = [{} for i ∈ [m]]
while #I ≥ 2 do

argmax,max ← None,0
for (|s〉 , 

∣∣s′〉) ∈ {
(|s〉 ,

∣∣s′〉) ∈ I2, |s〉 
= ∣∣s′〉} do
k = ∑m

i=1 min(si , s′
i)

if k>max then
argmax,max← (|s〉 , 

∣∣s′〉), k
end

end
if max=0 then

// No factorisation found: we add the paths of all remaining elements in IS and empty I
for |s〉 ∈ I do

for (|t〉i
m , l) ∈ path(|0〉m → |s〉) do

IS [i].add((|t〉i
m , l))

end
end
I.clear()

end
else

// Factorisation for a pair found: we add the paths of the elements of the pair in IS, remove them from I, and 
add the factor in I

(|s〉 , 
∣∣s′〉) ← argmax∣∣mins,s′

〉 ← ∣∣min(s1, s′
1), . . . ,min(sm, s′

m)
〉

for |s�〉 ∈ (|s〉 , 
∣∣s′〉) do

for (|t〉i
m , p) ∈ path(

∣∣mins,s′
〉 → |s�〉) do

IS [i].add((|t〉i
m , p))

end
I.remove(|s�〉)

end
I.add(

∣∣mins,s′
〉
)

end
end
if #I == 1 then

// One element remaining: we add its path in IS

|s〉 ← I.pop()

for (|t〉i
m , p) ∈ path(|0〉m → |s〉) do

IS [i].add((|t〉i
m , l))

end
end

Table 1
Time and memory complexity analysis of SLOS_gen and [18] for a generic output |t〉 = |t1, . . . , tm〉 ∈
F n

m , where Mn = #F n
m = (m+n−1

n

)
. We highlighted the SLOS values in bold when they were similar or 

better than the permanent-based ones. For the memory complexity of the one output case, we consider 
the worst case, as detailed in 3.2.3. For the memory complexity of the full distribution case, we consider 
the problem of storing every value, therefore needing at least O  (Mn) of memory. If we consider the 
enumerating problem instead, the permanent-based method would have a memory complexity of O  (n), 
far better than the O  (Mn) of SLOS. It is an open problem to how much the memory efficiency can be 
increased.

Time Complexity Memory Complexity

#Outputs One All One All

Permanent-Based [18] O

(
n

∏m
i=1(ti +1)

min
tl 
=0

(tl+1)

)
�

(2m+n−1
n

)
O (n) O (Mn)

SLOS_gen O
( m∑

i=1
ti

∏
j �=i(t j + 1)

)
O (nMn) O

( n
n/2

)
O (Mn)
3. The next step is similar, with the difference that the com-
mon factor is a term to be computed (so we keep it). I =
{|1,0,0,1〉}, and IS = [{}, {}, {(|1,0,0,1〉 , 2)}, {(|1,1,0,1〉 , 3)}, 
{(|1,1,1,1〉 , 4), (|1,1,1,1〉 , 3)}]

4. Finally, we can empty I: I = {}, and IS = [{(|0〉4 , 1)},
{(|1,0,0,0〉 , 4)}, {(|1,0,0,1〉 ,2)}, {(|1,1,0,1〉 , 3)} , {(|1, 1, 1, 1〉,
4), (|1,1,1,1〉 , 3)}]

Complexity of SLOS_gen The theoretical complexity of the algo-
rithm SLOS_gen is difficult to assess because it heavily depends 
on the redundancy in input and output states. In Section 3.2.3 we 
analyse the limit case where only one input and one output are 
considered, and how it relates to the permanent-based method of 
7

[18]. The results are summarised in the Table 1. In Section 4, we 
present a concrete implementation of SLOS_gen in the general 
case, and we discuss concrete benchmarks.

3.2.3. Limit case with one output/one input
The algorithm SLOS_gen can be specialized to the case where 

one only consider one input and one output state. This is the 
typical case that can be directly handled by [18]: it consists in 
computing Equation (2), so one can rely on the complexity results 
for computing the permanent of a matrix with potential repeated 
row or columns.

In this section, we discuss the complexity of the procedure in 
this simple one-input, one-output case, and compare it with [18].
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Conjugate trick While it is usually more physical to have one pho-
ton at most per mode in the input |s〉n

m , if |s〉n
m has more repeti-

tion than the output |o〉n
m , it is faster and equivalent to compute 

〈s|U†
F |o〉† than 〈o|UF |s〉 . That trick of taking the conjugate trans-

pose allows to transform the repetitions of the columns into the 
repetition of the rows if necessary, so the number of computation 
is reduced as much as possible. However, that trick is not general, 
as it is for a specific instance of one output, and needs more rep-
etitions in the input, that is not very likely in practice with single 
photon sources. In the following, we will consider a generic input 
|s〉 and only consider the repetitions in the output |t〉.

Worst case To efficiently compute the output 〈o|UF |s〉n
m , one 

has to take the mask |M〉m = |o〉n
m . The worst case is when the 

mask is of the form |1,1, . . . ,1,0, . . . ,0〉n , as it maximises the 
size of F k

≤M for each k. In that case, #F k
≤M = (n

k

)
, and each 

term needs k operations, as it is the number of terms in the 
sum of Equation (6). Therefore, the number of needed opera-
tions is 

∑n
k=1 k

(n
k

) = n2n−1. The complexity therefore matches 
the time complexity for computing a general permanent, as 
〈1, . . . ,1,0, . . . ,0|UF |1, . . . ,1,0, . . . ,0〉 is computed by the per-
manent of a matrix without any repetition of rows or columns.

General case For each state |t〉m ∈ Fm , let’s define αt = #{ti 
=
0, 1 ≤ i ≤ m}. From Eq. (6), we can see that every 〈t|UF |s〉k needs 
αt computations, using the already computed coefficients. Given 
an output state |t〉, we will compute every 

∣∣t′〉 ≤ |t〉 where ≤ is 
defined in 3.2.1. Therefore, the number of computations is S(|t〉) =∑
|t′〉≤|t〉

αt′ . For the proof, we will use the notation |t〉k = |t1, . . . , tk〉, 

restriction of |t〉m = |t〉. To give a generic formula of S , we proceed 
by induction by defining Sk(|t〉) = ∑

|t′〉≤|t〉k

αt′ , with Sm(|t〉) = S(|t〉)
and S1(|t〉) = t1. We can show that

Sm(|t〉) = ∑
|t′〉≤|t〉,t′m=0

αt′ +
tm∑

k=1

∑
|t′〉≤|t〉,t′m=k

αt′

= Sm−1(|t〉) +
tm∑

k=1

∑
|t′〉≤|t〉m−1

(αt′ + 1)

= Sm−1(|t〉) + tm Sm−1(|t〉) + tm
∑

|t′〉≤|t〉m−1

1

= (tm + 1)Sm−1(|t〉) + tm

m−1∏
i=1

(ti + 1)

Leading to the following formula:

S(|t〉) =
m∑

i=1
ti

∏
j 
=i

(t j + 1)

We can show that it is always less than the bound found in [18]:

m∑
i=1

ti
∏
j 
=i

(t j + 1) = ∑
ti 
=0

ti
∏
j 
=i

(t j + 1)

≤ ∑
ti 
=0

ti
1

min
tl 
=0

(tl+1)

m∏
j=1

(t j + 1)

=
(∏m

j=1(t j+1)

min
tl 
=0

(tl+1)

) ∑
ti 
=0

ti

= n

(∏m
j=1(t j+1)

min
tl 
=0

(tl+1)

)

That bound is strict whenever there are two ti > 0, t j > 0 such that 
ti 
= t j .
8

Average case For each state |t〉k
m ∈ F k

m , for each ui,∗ with i ∈
[m], the term ui,∗ 〈t|UF |s〉k will be used as many times as 
|t1, . . . , ti + 1, . . . , tm〉k+1 ≤ |M〉n

m with |M〉n
m ∈ F n

m . We can show 
that the number of time is Mn−k−1, which is the number of 
putting n − k − 1 photons into m modes, as |M〉 is necessarily 
of the form |t1 + q1, . . . , ti + 1 + qi, . . . , tm + qm〉 with qi ≥ 0 and ∑

i qi = n − k − 1.
As there are Mn different output states, we can show the aver-

age number of operation for computing one output is:

1

Mn

n−1∑
k=0

mMk Mn−k−1 = m

Mn

(
2m + n − 2

n − 1

)

= n

Mn

(
2m + n − 1

n

)
m

2m + n − 1

It is therefore the same average complexity of [17] (cf. the 
Corollary 3 for the precise formula), with a multiplicative ratio of 

m
2m+n−1 < 1.

Memory complexity Even if SLOS_gen is better in time for one 
input and one output than [18], it is important to highlight it is 
far more costly in memory. Given an output state |t〉n , at the step 
k, we need to store all the coefficients 〈t|UF |s〉k−1 and 〈t|UF |s〉k , 

with |t〉k−1 ≤ |t〉k ≤ |t〉n . As # 
{
|t〉k ≤ |t〉n

}
doesn’t have a simple 

formula [39], we will only consider the worst case. The worst 
case is when |t〉 has at most one photon per mode, for instance 
when |t〉 = |1,1, . . . ,1,0, . . . ,0〉n . In that case, the number of space 
needed at each step is O  

((n
k

))
. As we only need to store the val-

ues of two steps, and not all the n steps, we can only consider the 
costliest which is when k = n/2. The worst case space complexity 
is therefore O  

(( n
n/2

))
.

3.3. SLOS_hyb: general procedure for both weak and strong 
simulations

This section presents SLOS_hyb (shown in Algorithm 4), a hy-
brid of weak and strong simulation. It can be seen as an extension 
of SLOS_gen, with an iterative procedure and a recursive subrou-
tine.

Let us denote F k
S the set of intermediary states computed at the 

step k with Equation (6). In Section 3.1 we were interested in com-
puting every state, so F k

S = F k
m , while in Section 3.2 we had masks 

to compute specific outputs, so F k
S = F k

SM . For the hybrid version 
in Algorithm 4, we use a Select function to select the next in-
termediary states we would like to compute, so F k+1

S is defined 
as Select(F k

S ). In order to compute all coefficients in F k+1
S , we 

use SLOS_Rec with the particularity to only compute intermedi-
ary states that have not been computed so far, and we directly use 
the intermediary states needed for the coefficients of F k

S . We can 
code that information in a Boolean array (or a hash table) B such 
that B[|s〉][|t〉] is true if UF [|s〉][|t〉] has been computed, false oth-
erwise.

For strong simulations, we are aiming at computing the proba-
bilities of a given set of outputs. However, sometimes we would 
like to compute the states with the biggest probabilities, with-
out knowing in advance the probability distribution of the set of 
outputs. More generally, we would like to compute outputs giving 
conditions on the distribution even if we don’t know it yet. For 
instance, SLOS_hyb can solve the following problem.

Problem 3: hybrid simulation Given an input |s〉n
m , a threshold η

and a LO-circuit of m modes mapping a unitary U : m × m, can we 
obtain a set O = {|t〉 , |t〉 ∈ F n

m

}
such that 

∑
|t〉∈O

∣∣〈t|UF |s〉∣∣2
> η?
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Algorithm 4: SLOS_hyb with one input |s〉n
m and Select function. Each coefficient 〈t|U |s〉 will be stored in a dictionary or an array 

UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised at 
0. For simplicity, the array UF is of size O  

(
( n

m + 1)Mn
)
. The Select function enables to do Strong simulation without or with masks, weak

simulation, or a mix of them. B is an array or dictionary initialised at False and stores the coefficients already computed, so we don’t need to 
recompute UF [|s〉][|t〉] if B[|s〉][|t〉] is true. F k

≤M ∩Bs is a shortcut for {|t〉 |(|t〉 ∈ F k
≤M) ∧ (B[|s〉][|t〉] == False)} .

Global UF , B
Function SLOS_Rec(k, IS , F k

S , U):
(|s〉 , p) ← IS [k]
if k > 1 then

SLOS_Rec(k − 1, IS , F k−1
S ∩Bs, U) ; // Build with Equation (7)

end

for |t〉 ∈ F k
S do

for i ∈ [m] when ti 
= 0 do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t〉] +=

√
ti

sp
× U [i][p] × UF [|s〉][|t1, . . . , ti − 1, . . . , tm〉]

end
B[|s〉][|t〉] ← True

end
Function SLOS_hyb(|s〉n

m , U , Select):
UF [|0〉][|0〉] ← 1 ;

IS = [(|0〉0
m , p1

)
, . . . ,

(|s〉n−1
m , pn

)]
; // chosen randomly from Equation (1)

F k
S = {|0〉}

for k : 1 → n do
F k

S ← Select(IS , F k
S , k)

SLOS_Rec(k, IS , F k
S , U)

end

return F k
S

Even though this problem can be solved with 2.4 and just tak-
ing a subset of the full distribution, we can have a more efficient 
procedure by using the Algorithm 4 and the Select function of 
Algorithm 5. Note the “while loop” adds several states in F .

Weak simulation The algorithm of [16] uses the probability chain 
rule to sequentially sample photon by photon. At each step, some 
probabilities are computed in order to sample the outputs |t〉k for 
1 ≤ k ≤ n. At the end, we sample the desired sample |t〉n with n
photons from the desired distribution. To lighten the notation, we 
will note tk = |t〉k , sk = |s〉k , and we will note p(tk|tk−1, sk) the 
conditional probability to sample |t〉k conditioned on |t〉k−1 ≤ |t〉k , 
meaning we know the position of k − 1 photons in the output, and 
conditioned on the input2 being |s〉k .
The main idea is to avoid directly sampling from p(tk), by notic-
ing we can equivalently sample from p(tk|sk), where the inputs 
|s〉k are randomly chosen. Then, to sample from p(tk|sk), we use 
the chain rule to sample from p(tk|tk−1, sk) instead, given we al-
ready sampled |t〉k−1. The technical points can be summarised as 
follows3:

• We can show that p(tk) ∝ ∑
|s〉k≤|s〉n

p(tk|sk) ∝E|s〉k≤|s〉n

{
p(tk|sk)

}
, 

with p(tk|sk) =
∣∣∣〈t|UF |s〉k

∣∣∣2
, and with the expectation value 

summing uniformly over |s〉k ≤ |s〉n . (cf Lemma 1 and 3 of 
[16]4).

• We sample from E|s〉k≤|s〉n

{
p(tk|sk)

}
instead than sampling 

from p(tk). As the |s〉k are always uniformly distributed, we 

2 In the case of Boson Sampling we generally have |s〉n = |1,1,1, . . . ,1,0, . . . ,0〉m .
3 We use ∝ to lighten the formula and disposing of factorials coefficients depend-

ing on k, n.
4 In that paper, the photon to mode encoding as described in Section 5.3 is used, 

so the positions of the ith photon is described by ri ∈ [m]. Linking the notations, 
we have p(rk|r1, . . . , rk−1) = p(tk|tk−1). Their α is a way to parameterise the per-
mutation of the columns, representing the order of the input photons. Therefore 
considering a random permutation α1, . . . , αn is equivalent to consider a random 
order 

{
|s〉k ,1 ≤ k ≤ n

}
of the inputs.
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can first uniformly sample the order 
{
|s〉k ,1 ≤ k ≤ n

}
, and 

then sample from the p(tk|sk) distribution.
• To sample from p(tk|sk), we use the chain rule. For a fixed 

order 
{
|s〉k ,1 ≤ k ≤ n

}
- randomly sampled at the step 2 - we 

have p(tn|sn) = p(t1|s1)p(t2|t1, s2) . . . p(tn|tn−1, sn). At the step 
k, given the previous sample |t〉k−1, we sample the output |t〉k

from p(tk|tk−1, sk).

•
{

p(tk| |t1, . . . , tm〉k−1 , sk), |t〉k ≥ |t〉k−1
}

=
{∣∣〈t1, . . . , ti + 1, . . . ,

tm|UF |s〉k
∣∣2

, 1 ≤ i ≤ m
}

. We therefore compute those m per-

manents to compute the desired probabilities and sample |t〉k .

We will now explicit how SLOS_hyb in Algorithm 4 can perform 
the weak simulation. To be clearer and slightly more efficient, the 
commands in the for loop are inversed: we first compute the am-
plitudes with SLOS_Rec, and then we would use the Select
function to sample:

1. Given an input |s〉n , the random order s1 ≤ s2 ≤ · · · ≤ sn

is done by the random choice of IS . We initialise F k
S =

{|1,0, . . . ,0〉m , . . . , |0, . . . ,0,1〉m}.
2. The Select function at the step 1 ≤ k ≤ n and given a set of 

states F k
S , will sample |α〉k from 

{∣∣〈t|UF |s〉∣∣2
∣∣∣ |t〉 ∈ F k

S

}
. Then 

if k < n, it will return the next values to compute, i.e. the set 
{|α1, . . . ,αi + 1, . . . ,αm〉 , i ∈ [m]}. If k = n, then we are at the 
last step, so we just can return the last sample {|α〉n}.

4. Implementation

In this section, we discuss the concrete implementation of
SLOS_gen, as found in Perceval [19].

To build-up intuition, Table 2 gives some orders of magnitude 
to the quantities involved and Table 3 gives a quick equivalence of 
these quantities in time and storage. Considering the exponential 
number of values we are dealing with, our challenge is to opti-
mize as much as possible the memory structures and the details 
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Algorithm 5: Select function which answers to the Prob-
lem 3.

Function Select(IS , F k
S , k):

S ← 0
(|s〉 , �) ← IS [k]
F ← {}
while S ≤ η do

|t〉 = F k
S .pop()

S+= ∣∣〈t|UF |s〉∣∣2

F .add(|t〉)
end
return {|t1, . . . , ti + 1, . . . , tm〉 , |t〉 ∈ F , i ∈ [m]}

Table 2
Value of Mn for practical combinations of m and n.

n Mn for m = n Mn for m = 2n Mn for m = 3n

12 1.35 × 106 8.34 × 108 5.23 × 1010

14 2,01 × 107 3.52 × 1010 4.35 × 1012

16 3.01 × 108 1.5 × 1012 3.66 × 1014

17 1.17 × 109 9.85 × 1012 3.37 × 1015

18 4.54 × 109 6.46 × 1013 3.11 × 1016

20 6.89 × 1010 2.79 × 1015 2.65 × 1018

Table 3
Equivalency of 10k with concrete time and storage references.

time necessary for 
single instructions 
processed on a 1 GHz 
computer

equivalent storage 
size (any unit)

number of bytes 
necessary to store 
a pointer

106 1 milliseconds 0.95 Mega 3
108 0.1 seconds 95 Mega 4
1010 10 seconds 9.3 Giga 5
1012 17 minutes 903 Giga 5
1014 27 hours 90 Tera 6
1016 115d 8.8 Peta 7
1018 31 years 888 Peta 8

of the implementation to gain practical factors allowing to extend 
the strong simulation for a few more photons.

In this section we assume that we have a fixed number of 
modes m. We will first describe the memory structure we have 
been introducing for the implementation of the algorithms. We 
then discuss the implementation challenges and the optimization 
tricks, and finally add a note on masking.

4.1. Memory structures

The two main memory structures will be labelled as fsarray
(Fock State Array) and fsimap (Fock State Inverse Map). fsar-
ray is mainly used to get indices used for building fsimap. Both 
structures depend only on m and n and are independent of the 
unitary matrix. During the actual simulation they will be used as 
read-only structures containing the “calculation path”. It is thus 
possible to pre-compute these structures and serialize them to 
files. For the largest ones, it is also possible to use the files as a 
memory-map.

fsarray - indexes of the Fock states Each fsarray(k) is an array 
in charge of representing all the Fock states |s〉k

m and assigning a 
unique ID to each of them. We want this structure to be search-
able, and to have the least memory footprint. For this we use 
sequences S(|s〉k) = (p1, ..., pk) where pi is the position of the ith

photon in the Fock state |s〉k . For instance: S(|1,0,0,2〉) = (1, 4, 4), 
which we denote ADD, mapping each number to an uppercase let-
ter for the sake of readability.

This representation of Fock states, which we call photon to mode
encoding, has the following nice properties:
10
k1 k2 kl

k1(k2 − 1)...kl(k1 − 1)k2...kl k1...(ki − 1)...kl

−1 −1 −1

Fig. 3. Representation of a cell of a fsimap(n): here the n photons are occupying l
mode, so we have n − l pointers not used.

1. It is ordered using an intuitive lexicographical order on the 
(p1, ..., pk): e.g.

S(|1,0,0,2〉) = ADD> S(|1,1,1,0〉) = ABC.

Thus it is searchable.
2. The sequence S(|s〉) is iterable: (p1, ..., pk) 

+1−→ (p′
1, ..., p

′
k), 

where we can simply increment as follows: (a) p′
k = pk +

1 if pk < m, otherwise (b) we calculate pk−1 the same 
way (possibly going to pk−2, . . . , p1) and pk = pk−1, e.g. 
(1, 4, 4)/ADD

+1−→ (2, 2, 2)/BBB.
3. The sequence S(|s〉) can be represented in memory with a 

fixed �log2(m)�-bit buffer.
4. It is more compact than mode to photon encoding for n < m. 

This case is the most common use case with circuits with sin-
gle photon sources, as each input mode would have at most 
one photon.

Properties 1 and 3 imply that, by binary search, it is possible to 
find a specific Fock state in a fsarray in O  (log2 Mk). Property 
2 implies that it is even possible to not store the fsarray if we 
are interested in all the Fock states since we can directly iterate 
through them. Thus, we will only store fsarray(n), as the com-
putation of the states fsarray(k + 1) will only need the iteration 
of fsarray(k) and the structure fsimap as detailed below.

fsimap - mapping between Fock states Our algorithms require that 
we store a map between the “child” Fock states of k + 1 photons 
|s〉k+1

m to the “parent” Fock states of k photons |s〉k
m (Fig. 3). We 

call this structure fsimap(k + 1) and we need to build a list of n
fsimap, fsimap(n), fsimap(n − 1),..., fsimap(1).

For a Fock state to find its parent, we just need to remove one 
photon. For instance for ADD we just remove a A or a D to reach
AD or DD. So more generally for each Mk+1 Fock state in F k+1

m we 
need to store up to k + 1 indexes to the parent. Most of the time 
we could store less, but we prefer keeping direct access to each 
entry in the fsmap, so we are keeping for each state exactly k + 1
pointers.

The size of a layer is then: Sfsimap(k) = fsimap(k) is
�log256(Mk−1)� × k bytes.

So to summarize - starting from all the states in F k+1
m , we can 

find their index idx thanks to fsa(k + 1). With the index, we can 
find the location of the index to the parent states in fsa(k) by 
direct memory access in fsimap(k + 1) to the position: idx × (k +
1) × Sfsimap(k) .5

The construction of fsimap is straightforward using the 2 in-
volved fsarray.

5 Note that we can get a more compact version of the fsimap(k) for k < n when 
the size of the index to each state is 4-bytes long. Indeed in that case, we can then 
get rid of the non-used cells for the parents pointers. We then lose the ability the 
direct access through the fsa(k) index, but this index is only used when referred 
to by child structure, so we can instead replace the index by the direct pointer to 
the position of the state in memory.
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4.2. Implementation optimization

All the implementation is done in C++ optimized with SIMD 
vectorization. Some specific points:

1. Vectorization: Cross-platform SIMD vectorization is done
through MIPP [40] library6 supporting SSE, AVX, AVX-512 and 
ARM NEON (32-bit and 64-bit) instructions. The main op-
eration that we are interested in is “horizontal vector sum 
of complex number multiplication”. This operation is not a 
primitive and is decomposed into the 3 MIPP primitives: in-
terleave, cmul, hadd.

2. The SLOS_full algorithm is fully iterative: for k = 1 to n the 
coefficients corresponding to |s〉k+1

m are computed in one sin-
gle loop by iterating on the fsimap(n) structure. Each new 
coefficient is a sum of products of unitary matrix coefficient 
times coefficient of |s〉k

m . There is no overhead in the imple-
mentation.

3. Recursion: The SLOS_gen algorithm is recursive. Starting 
from the index retrieved by binary search on fsaarray on 
layer n, the expected coefficient (the probability amplitude) is 
calculated by recursively retrieving the coefficients for all the 
parents at level k − 1. To reduce overhead caused by recur-
sion, a bit vector is used to check if the parent coefficient is 
not yet calculated before going recursive. Also, all the struc-
tures necessary for Vectorization are pre-allocated globally to 
reduce overhead created by dynamic allocation on the stack.

4. Memory access: one major challenge for SLOS algorithms re-
sides in memory allocation. When pushed to the maximum 
(say, 17 photons for 34 modes) - memory structures will use 
several hundreds/thousands of gigabytes in memory. Each co-
efficient calculation needs parent coefficient scattered on this 
memory range limiting possibility of processor to benefit from 
hardware Lx memory caching. Compared to local permanent 
calculation algorithm, this memory access time creates over-
head depending strongly on hardware configuration as seen in 
Section 5.

5. Multithreading:
• Algorithm SLOS_full can be fully run on multiple threads 

without additional overhead: for each k, we simply divide 
the coefficients list by the number of threads.

• For algorithm SLOS_gen, multi-threading is more limited: 
it is only possible to distribute top branches of the calcula-
tion.

In both cases, impact of the multi-threading is actually limited 
by memory access: adding more threads on very large mem-
ory structure do not significantly increase the performance.

4.3. Masking

Let us note that the implementation proposed is fully compliant 
with the notion of “masking” introduced in section 3.2.1: tech-
nically masking is a transversal optimization allowing to reduce 
(potentially massively) the complete Fock state space and there-
fore reducing proportionally the time and storage.

The only location in the code impacted by masking is on 
the fsaarray construction. To find all the masked items, we are 
keeping the same global iterations on all possible Fock states, but 
are skipping the ones that are not compliant with the mask. It is 
likely that we could find a faster iteration method on masked Fock 
states, however, since this only impacts pre-computing, we don’t 
need a special optimization.

6 https://github .com /aff3ct /MIPP.
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Fig. 4. Comparative performance of Glynn and SLOS for calculation of a single 
n ×n permanent 128-bit complex numbers. The green curve is the n2n curve renor-
malised with the first point of the SLOS curve. Benchmark computes 100 perma-
nents in a row and outputs the mean time. The benchmark is run on a Intel Core 
i7-10510U with 16GB of memory. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

Once the pre-computed memory structures detailed below are 
built, there is no difference in implementation when simulating on 
a masked or non-masked system.

5. Performance

In this section, we discuss practical aspects of SLOS. We first 
show a typical use case demonstrating the need of strong simula-
tions and effectiveness of our implementation in Section 5.1. We 
then discuss possible limitations. In Section 5.2, we compare per-
formance of SLOS for a single output with at most one photon 
per mode compared to Glynn’s algorithm, state of the art algo-
rithm for computing the permanents of generic matrices. Finally, 
in Section 5.3 we analyze the space limitation of strong simulation 
using our algorithm.

5.1. A typical QML application requiring strong simulation

Using the framework Perceval [19], we have implemented7 the 
simulation of [22], using a generic m ×m interferometer and its full 
output probability distribution to train a model solving differential 
equations. For an evolving configuration of the circuit, the algo-
rithm has to iterate on all output states |t〉n

m corresponding to input 
state |1,1, ...,1〉n . Based on Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) optimiser [41], the algorithm converges in 200-400 itera-
tions, each of them needing thousands of full distribution compu-
tations. Table 4 shows the evolution of Mn for different values of n
and the time necessary for 150 iterations of the algorithm compar-
atively with the direct calculation of Mn permanent with Glynn’s 
algorithm and SLOS_full algorithm. Use of SLOS_full prac-
tically allows pushing of simulation from 6 photons (processed in 
2 min with SLOS_full and 11 h without) to 10 photons.

5.2. Benchmarking SLOS_gen for one output

We compare in Fig. 4 the speed of our algorithm to compute 
a single permanent in the worst possible situation, i.e. when the 
output is |1, ....,1〉, with a traditional permanent calculation algo-
rithm. We selected the algorithm from Glynn [15] as [19] shows 

7 Details of the algorithm can be found at https://perceval .quandela .net /docs /
notebooks /Differential %20equation %20solving .html.

https://github.com/aff3ct/MIPP
https://perceval.quandela.net/docs/notebooks/Differential%20equation%20solving.html
https://perceval.quandela.net/docs/notebooks/Differential%20equation%20solving.html
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Table 4
In this table, we compare time of QML algorithm to perform 150 optimization iterations with both Permanent-
Based and SLOS algorithms. This application is the ideal use case of SLOS since we are interested into the full 
output states exact distribution.

Number of photons n

2 3 4 5 6 7 8 9 10 11

Mn 3 10 35 126 462 1716 6435 24310 92378 352716
Permanent-Based 36s 3m 16m 1h30 11h 3d not possible
SLOS 14s 15s 29s 73s 2m 5m 22m 1h45m 10h 2d8h
Fig. 5. This graph shows four regions for (m, n) combinations. In blue - m ≥ n with 
configurations that can run on a personal laptop (up to 8Gb memory). Curves in 
orange/red/black are the respective limits of 256Gb/4Tb/1Pb memory. For instance, 
strong simulation with SLOS of 24 photons on a 24 modes circuit would require 
1500T b of processing memory!

that for up to 19 modes, this algorithm is practically one of the 
most efficient.

The curves do not show the precompilation time needed for
SLOS nor the allocation of the Fock states. We can see that the 
practical time for SLOS is better for small cases, and that, as pre-
dicted by the complexity analysis, the growth is very close to the 
n2n curve. This is even true for small instances.

The code for Glynn’s algorithm developed in Perceval [19]
makes heavy use of hardware optimizations, and shows a speedup 
compared to SLOS when n > 12. The speedup has a multiplica-
tive factor between 2 and 4 depending on the machine. On Fig. 4, 
the factor is around 4 for large values of n. Indeed, as the data 
in Glynn’s algorithm is local, one can rely on efficient libraries to 
sumprod the terms, improving the time of the computations. Due 
to the structure of the algorithm (because of the heavy use of pre-
computed data), SLOS cannot make use of these optimizations. 
One has however to note that without these hardware-specific op-
timizations, there is no particular speedup for Glynn’s algorithm 
compared to SLOS.

5.3. Memory usage

Finally, since SLOS_gen is making intensive use of memory, 
we have computed in Fig. 5 the practical limitations of strong sim-
ulation. The graphics vertical axis is the number of modes m, and 
the horizontal axis the number of photons n. We are only inter-
ested in m ≥ n, and we have drawn boundaries of three typical 
workstations. In blue, computer with up to 8Gb of memory - typi-
cally any modern laptop. In orange, the limit of 256 Gb memory -
typically a large compute node. Any (m, n) point below the orange 
curve will fit in 256 Gb memory. The red curve represents mem-
ory need up-to 4 Terabytes memory representing a very large HPC 
node. The black curve represents a potential super-computer with 
12
up to 1 Petabyte of memory. As of today technology this boundary 
can be considered as an area unreachable for strong simulation, 
and so for a full description of linear optical processes.

6. Conclusion

In this paper, we presented a versatile framework for the simu-
lation of linear optical circuits, with a trade-off between time and 
memory usage. An efficient implementation is provided and we 
discuss how it outperforms the permanent-based algorithms. It is 
an open problem to determine to what extent the memory usage 
of SLOS can be improved, or to what extent the time complex-
ity of the permanent-based method can be improved with more 
memory. As a future work, we plan to incorporate noise models, 
and validate the simulations against physical hardware.
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