
Computer Physics Communications 291 (2023) 108848

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Strong simulation of linear optical processes ✩

Nicolas Heurtel ∗, Shane Mansfield, Jean Senellart, Benoît Valiron

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 September 2022
Received in revised form 27 June 2023
Accepted 28 June 2023
Available online 4 July 2023

Keywords:
Quantum computing
Linear optics
Strong simulation

In this paper, we provide an algorithm and general framework for the simulation of photons passing
through linear optical interferometers. Given n photons at the input of an m-mode interferometer, our
algorithm computes the probabilities of all possible output states with time complexity O

(
n
(n+m−1

m−1

))
,

linear in the number of output states
(n+m−1

m−1

)
. It outperforms the permanent-based method by an

exponential factor, and for the restricted problem of computing the probability for one given output it
improves the time complexity over the state-of-the-art for the permanent of matrices with multiple rows
or columns, with a tradeoff in the memory usage. Our algorithm also has additional versatility by virtue
of its use of memorisation – the storing of intermediate results – which is advantageous in situations
where several input states may be of interest. Additionally it allows for hybrid simulations, in which
outputs are sampled from output states whose probability exceeds a given threshold, or from a restricted
set of states. We consider a concrete, optimised implementation, and we benchmark the efficiency of our
approach compared to existing tools.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In quantum computation one encodes information into the
states of quantum systems – photons, atoms, ions, etc. – which
can then processed by evolving and manipulating those systems
according to the laws of quantum mechanics. It is by now well-
known that the paradigm opens vast possibilities for exploiting
non-classical behaviours available to quantum systems in order to
process information in radically new ways that can lead to a va-
riety of quantum advantages including computational speedups [1],
enhanced security [2], more efficient communication [3], and the
potential for reduced energy consumption [4,5], when compared to
classical information processing.

The development quantum technologies aiming to leverage
such advantages have been advancing at pace over the past num-
ber of years. A variety of different hardwares, each using different
physical supports for the quantum information, are being pur-
sued. Among these, photonic hardware has a privileged role in
the sense that regardless of hardware choice it will eventually be
necessary to network quantum processors, and as the only viable
support for communicating quantum information it is inevitable
that some quantum information must eventually be treated pho-
tonically. Photons have a number of other desirable features too,

✩ The review of this paper was arranged by Prof. W. Jong.

* Corresponding author.
E-mail address: nicolas.heurtel@quandela.com (N. Heurtel).
https://doi.org/10.1016/j.cpc.2023.108848
0010-4655/© 2023 Elsevier B.V. All rights reserved.
including an absence of decoherence in transparent media – i.e. a
capacity to reliably maintain their quantum states –, reduced cryo-
genic requirements compared to other hardware approaches, and
good prospects for scalability due to compatibility with the exist-
ing semiconductor industry [6].

Photonic quantum technologies consisting of single-photon
sources, which are coupled to linear optical interferometers –
which may be parametrisable and take the form of integrated
circuits –, which are coupled in turn to photon detectors, offer
a promising route to implementing quantum computation. They
enable both non-universal models of quantum computation [7],
which have led to laboratory demonstrations that claim to show
quantum computational advantages with today’s technology [8,9],
as well as models for achieving universal [10], and fault-tolerant
quantum computation [11].

To accompany the technological developments in photonic
quantum computing it is also important to have access to tools for
design, testing, and experimenting with algorithms, protocols, and
schemes. In this respect, the classical simulation of photonic quan-
tum computing platforms has become an increasingly important
problem. Of course, one of the main interests of quantum compu-
tation is that it quickly becomes unfeasible for classical processors
to simulate. Yet there are clear benefits to achieving optimal clas-
sical simulation within the theoretical limits. This can aid in de-
signing and perfecting interferometers that generate specific logic
gates, entangled states, and other building-block components of
quantum computers. It can provide both development and verifi-
cation tools for algorithm and software development. Furthermore

https://doi.org/10.1016/j.cpc.2023.108848
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108848&domain=pdf
mailto:nicolas.heurtel@quandela.com
https://doi.org/10.1016/j.cpc.2023.108848

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
it can help to define the performance boundaries separating the
quantum from the classical computational paradigm.

Two special cases are of particular interest: strong simulation,
where a classical program computes the complete quantum state
obtained at the outputs of a photonic circuit; and weak simulation,
or sampling, where the classical program emulates the probabilis-
tic behaviour that would be observed at the outputs. The task of
predicting, with classical algorithms and computers, the output
states for photons passing through interferometers relates to the
#P -hard problem of calculating the permanents of complex matri-
ces [12] associated with the interferometer [13].

In order to perform strong simulation, one solution is therefore
to reuse algorithms originally designed for computing permanents.
The state-of-the-art classical algorithms for computation of the
permanent of a complex matrix are those due to Ryser [14] and
Glynn [15], while the state-of-the-art classical algorithms for bo-
son sampling (essentially the weak simulation problem) are those
due to Clifford and Clifford [16,17]. As the strong simulation of
linear optical circuits involves the permanent computation of ma-
trices with repeated rows or columns, algorithms with a better
complexity [18] than Ryser’s or Glynn’s can be used.

On the other hand and independently from permanents, the
folklore of linear optics is aware of informal, back-of-the-envelope
techniques for running fixed-photon number simulations. The goal
of this paper is to formalize and analyze these folklore techniques
and provide a comparison with the algorithms for the permanents
of complex matrices. In particular, we propose a framework for
strong simulation, amenable to weak simulation, which addition-
ally allow for hybrid forms of simulation between these two partic-
ular cases. Accross the paper, we shall be using the acronym SLOS,
standing for Strong Linear Optical Simulator. We derive an algorithm
for computing the permanent of a complex matrix with repeated
rows that improves the state-of-the-art [18] time complexity, with
a tradeoff in memory. We detail optimised implementations of our
algorithms that can be found in the QuandeLibC library1 (which
is also integrated in the open-source software platform Perceval
[19]). We benchmark the performance of our algorithms, compar-
ing them to implementations of the Glynn and Ryser algorithms in
the Walrus library [20], as well as implementations in QuandeLibC

of these algorithms, which appear to be more efficient, and of the
Clifford and Clifford algorithms also in QuandeLibC.

Contributions A preliminary version of this work has been pre-
sented at IEEE Quantum Computing and Engineering [21]. The
main contributions of this paper are three Strong Linear Optical
Simulators (SLOS), and can be summarised as follows:

• An algorithm, labelled SLOS_full, for computing the full
output amplitude distribution of a linear optical circuit for
a given input. Although this method would be naturally de-
scribed in physics textbooks, to the authors’ knowledge this is
the first complexity study and explicit implementation of that
method. The time complexity is O

(
n
(n+m−1

m−1

))
, and so is linear

in the number of output states
(n+m−1

m−1

)
. The full distribution

can be obtained in an optimal space of O
(n+m−1

m−1

)
.

• A generalised strong simulation algorithm, labelled SLOS_gen,
for computing the amplitudes of any set of outputs from any
set of inputs. For one input, SLOS_gen has the same time
complexity as SLOS_full for the full output distribution,
and improves the state-of-the-art [18] for the specific case
of a single output, giving a new upper bound for computing a
permanent with repeated rows or columns.

1 On Github at https://github .com /Quandela /QuandeLibC.
2

• A hybrid algorithm that can combine both weak and strong
simulation for many inputs and outputs, labelled SLOS_hyb.
SLOS_hyb can sample from a set of outputs whose proba-
bility exceeds a given threshold, or even sample among a re-
stricted set of states. SLOS_hyb can both perform both weak
sampling and strong simulation (as SLOS_gen).

• Detailed optimised implementations of both SLOS_full and
SLOS_gen. The implementations are open-source and avail-
able in the QuandeLibC library.

• Practical performance benchmarking of the algorithm in a
generic example of a quantum machine learning algorithm
[22], where it is seen to give a considerable practical edge over
the permanent-based approach to simulation.

Plan The paper is structured as follows: in Section 2 we provide
some background on linear optical simulation, and in particular
the specific problems we focused on are set up in Section 2.4, with
illustrations of typical use cases. In Section 3 we introduce the al-
gorithms and their complexity analysis, summarised in Table 1. The
practical implementation and optimisation are presented in Sec-
tion 4, while benchmarks with the permanent-based model are in
Section 5. We finally conclude and discuss in Section 6.

2. Simulating linear optical circuits

In Section 2.1, we set up some formalism and notational con-
ventions to be used throughout the paper. After briefly explaining
the hardness of LO-circuit simulation in Section 2.2, we present
and define the weak and strong simulation problems in Sec-
tion 2.3. In Section 2.4, we present the two strong simulation
problems that we propose to answer in Section 3.

2.1. Formalism of linear optical circuits and notation

Throughout this paper, we will be considering n indistinguish-
able photons over m modes. Typically these are spatial modes, but
they could in principle also correspond to other discrete degrees
of freedom such as polarisation, frequency, or time-bins [23,24].
States of the system will be Fock states or their superpositions
and we write |s1, s2, . . . , sm〉 to denote the Fock state with si
photons in mode i. Sometimes it will be interesting to consider
states containing less than n photons, so we introduce the nota-
tion |s1, s2, . . . , sm〉k to describe a state with

∑m
i=1 si = k photons,

sometimes shortening this to |s〉k
m . The vacuum state, with no pho-

ton in m modes, will be denoted as |0〉m . We also introduce F k
m

as the set of the Fock states of k photons into m modes, so that
F k

m =
{
|s1, s2, . . . , sm〉k

∣∣∣si ∈N
}

. It is known that #F k
m = (k+m−1

m−1

)
,

as it is exactly the number of ways to put k indistinguishable balls
into m distinguishable bins [25]. For readability and as m will be a
fixed parameter, that number will be denoted as Mk .

It is standard in the second quantisation formalism to associate
each mode i with a creation operator â†

i : F k
m → F k+1

m acting as
follows:

â†
i |s1, . . . , si, . . . , sm〉k = √

si + 1 |s1, . . . , si + 1, . . . , sm〉k+1

This paper focuses only on linear optical operations, for which
the transformations on the creation operators are described by
a unitary matrix U = (ui, j) of size m × m such that â†

p �→∑m
i=1 ui,p â†

i . As shown in [26], every such unitary can be imple-
mented by a linear optical circuit of m spatial modes, with only
phase shifters and beamsplitters [23] as linear optical components.
We will call such a circuit an LO-circuit.

Each unitary matrix U : m × m acting on the vector of cre-
ation operators can be associated with a unitary operator UF on

https://github.com/Quandela/QuandeLibC

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
Hm = ⊕+∞
k=0H

k
m where Hk

m is the Hilbert space generated by the
elements of F k

m [7,13]. UF |s〉k
m will represent the state obtained

when the state |s〉k
m is the input of an LO-circuit implementing U

and can be obtained with:

UF |s〉n
m =

m∏
p=1

1√
sp !

(
m∑

i=1

ui,p â†
i

)sp

|0〉m (1)

Following our notation, n
m〈t|UF |s〉n

m is the amplitude assigned
to the state |t〉n

m within the overall output state UF |s〉n
m .

2.2. Hardness of linear optical simulations

Given a matrix M : n × n, the permanent of M is defined as
follows:

Perm(M) =
∑
σ∈Sn

n∏
i=1

mi,σ (i).

Efficiently computing the permanent is crucial in evaluating linear
optical transformations, as we can show that:

n
m〈t|UF |s〉n

m = Perm
(
U |s〉,|t〉

)
√

s1! . . . sm!t1! . . . tm! , (2)

where U |s〉,|t〉 is obtained from the unitary U by repeating si times
its ith column and t j times its jth row [27,28]. We return to this
in Section 2.4.

It is known that computing a permanent of a general complex
matrix [12] or even subclasses of real orthogonal matrices [29]
is a #P -hard problem. The fastest known algorithms [14,15] for
computing a permanent of a general matrix of size n, with some
pre-computation allowed [30], are in O (n2n).

For computing the permanent in Equation (2), the redundancy
of the rows and columns in U |s〉,|t〉 can be taken advantage of, giv-
ing a faster algorithm [18]. More generally, for an output state
|t1, ..., tm〉, the permanent can be computed in:

O

⎛
⎝n

∏m
i=1(ti + 1)

min
tl
=0

(tl + 1)

⎞
⎠ (3)

operations. Note that this bound is equal to O
(
n2n−1

)
in the worst

case, when there is at most one photon per mode, and equal to
O (n) in the best case, when only one mode is occupied.

2.3. Weak and strong simulation

When considering a model for a biased coin, two strategies can
be followed. Either one can try to literally emulate the probabilis-
tic behaviour of the coin and have a protocol answering “head” or
“tail” with the appropriate probabilities, or to more fully charac-
terise the behaviour and by listing the (two) precise probabilities
for “head” and “tail”. The former approach is called weak simulation
while the latter is strong simulation.

Weak simulation Weak simulation of LO-circuits is the classical
sampling from their output distribution, also known as the Boson
Sampling problem [7]. Given an input |s〉n

m and a LO-circuit imple-
menting a unitary U , we would like to sample an output |t〉n

m from
the distribution DU (s) =

{∣∣〈t|UF |s〉∣∣2
, |t〉 ∈ F n

m

}
.

Under some assumptions, weak simulation has been shown to
be classically hard [7], as it would imply P #P = B P P N P leading
to a collapse of the polynomial hierarchy of complexity classes
to the third level. Therefore, Boson Sampling is a good candidate
3

for quantum advantage, as a linear optical computer with single-
photon inputs can naturally sample from DU (s). It was shown that
weak simulation could be done in O (n2n + mn2) [16], which was
further improved to O (n1.69n) on average when m = n [17] thanks
to a more efficient way to compute permanents with repeated
rows.

Even though weak simulation is not the main focus of the pa-
per, it can be recovered as a by-product of the general algorithm
SLOS_hyb presented in Section 3.3.

Strong simulation Strong simulation of LO-circuits is the classical
computation of the output amplitudes (or the probabilities): Given
an input |s〉n

m and an LO-circuit implementing a unitary U , we
would like to compute the amplitudes 〈t|UF |s〉 , or the probabil-

ities
∣∣〈t|UF |s〉∣∣2 with |t〉 ∈ F n

m .
As explained in Section 2.2, we can directly compute them by

computing the permanents of U |s〉,|t〉 . Therefore, the complexity of
computing one amplitude or probability is exactly the complexity
of computing one permanent.

In this paper, we propose a procedure directly computing
the amplitudes of several outputs or inputs, which is more effi-
cient than computing them separately and independently, cf. Sec-

tions 3.1 and 3.2, only needing O
(∑m

i=1 ti
∏

j
=i(t j + 1)
)

opera-

tions for one output, as shown in Section 3.2.3 and summarised
in Table 1. We therefore can efficiently solve two kinds of strong
simulation problems, which we set out in Section 2.4.

2.4. SLOS problems: two strong linear optical simulation problems

This section will introduce the two classes LO simulation prob-
lems summarised in Fig. 1. For each class, we provide concrete
examples and typical use-cases. Each problem has a proposed so-
lution described in Section 3 and summarised in Fig. 2.

Problem 1: full amplitude list simulation Given an input |s〉n
m and an

LO-circuit of m modes implementing a unitary matrix U : m × m,
what is the output state UF |s〉n

m? Equivalently, what is the full
amplitude list

{〈t|UF |s〉 , |t〉 ∈ F n
m

}
? This situation is schematised

in Fig. 1a.

Example For instance, we can consider an LO-circuit of three
modes implementing a unitary U , with an input of two photons
|1,1,0〉. In that problem, we would like to compute every output
state of F 2

3 , meaning we would like to know the output:

UF |1,1,0〉 = α1 |2,0,0〉 + α2 |0,2,0〉 + α3 |0,0,2〉 + α4 |1,1,0〉
+ α5 |1,0,1〉 + α6 |0,1,1〉 .

Notice that we can compute each amplitude αi of an output
state |t〉 by computing the permanent of U |1,1,0〉,|t〉 , as defined
in Section 2.2. To compute α3, we would need to compute
Perm(U |1,1,0〉,|0,0,2〉). By taking the first and second column of U , ⎛
⎝u1,1 u1,2

u2,1 u2,2
u3,1 u3,2

⎞
⎠ and repeating two times the third row to form a

U |1,1,0〉,|0,0,2〉 , we have:

α3 = Perm(U |1,1,0〉,|0,0,2〉)√
2! =

Perm

(
u3,1 u3,2
u3,1 u3,2

)
√

2

= √
2 × u3,1 × u3,2

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Fig. 1. Application Schemes of Problem 1 and Problem 2. • is a chosen number of photons, while ∗ is every possible number.
Typical use-cases As the full amplitude list is a complete descrip-
tion of an LO-circuit and the input can be directly the state right
after the photon sources, applications for this problem can be both
practical and theoretical. One can think of:

• Simulate or look for circuits preparing a specific output dis-
tribution like entangled high-dimensional states [31] or Bell
Measurements [32].

• Check the correctness and noise of experimental circuits with
the theoretical distribution. One can certify the correctness of
Boson sampling by computing metrics (such as total varia-
tional distance, bunching probabilities,. . .) from the statistics
obtained [33–36].

• Machine Learning algorithms as the approximation of differen-
tial equations of [22], application detailed in Section 5.1.

Problem 2: generic strong simulation Given a set of inputs I, a
set of outputs O and an LO-circuit of m modes implementing
a unitary matrix U : m × m, what are the output amplitudes {〈t|UF |s〉 , |s〉 ∈ I, |t〉 ∈O}

?

Typical use-cases Often, only specific outcomes are of interest, so
the full output distribution of a LO-circuit is not needed. Also, for
every circuit encoding logic gates or functions in general, we need
to know the effect of the LO-circuit on each different possible in-
put, so several inputs are needed. Therefore, that problem is very
general and tackles various applications, in which we can highlight
two general classes of schemes.

• Post-selected scheme. Presented in Fig. 1c, it consists of only
considering —or selecting— some inputs and some outputs
according to some criteria. A canonical example is the im-
plementation of the 2-qubit CNOT-gate of [37]. Working on 6
modes with 2 photons, the considered input and output states
are X = {|0,1,0,1,0,0〉 , |0,1,0,0,1,0〉 , |0,0,1,1,0,0〉 ,

|0,0,1,0,1,0〉}. In other words, the circuit is regarded as a
map restricted on the 4-dimensional subspace C[X] gener-
ated by X , and not the full 21-dimensional H2

6 space. The
term “postselected” refers to the fact that in general, the out-
put state might have a component orthogonal to C[X] (for
instance, maybe the state |0,2,0,0,0,0〉 has a non-zero am-
plitude). Such orthogonal components are considered bogus.
They are ruled out at the end of the computation, when mea-
suring the system.

• Heralded scheme. Presented in Fig. 1b, it consists in design-
ing a LO-circuit that can fail, but for which the failure can be
decided upon the measurement result of some of the output
modes. For instance, in [38] a scheme is proposed to imple-
ment the 2-qubit CZ-gate. The 4 input modes can accommo-
date 2, 3 or 4 photons, and the input state is generated with
{|1,1,1,1〉 , |1,0,1,1〉 , |0,1,1,1〉 , |0,0,1,1〉}. For the output,
we only consider the cases where the two last modes contain
a photon: |∗,∗,1,1〉. This scheme is “heralded” in the sense
4

Fig. 2. Input and Output relations of SLOS_full and SLOS_gen, solution algo-
rithms respectively to the Problem 1 and Problem 2 of Section 2.4.

that the computation only happens on the two first modes:
the last two modes are just witnesses that the computation
went well. Unlike the post-selected scheme, measuring these
two last modes does not destruct possible entanglement on
the two first modes.

3. SLOS algorithms

We first present SLOS_full in Section 3.1, which computes
the full distribution of a given input, while also proving its com-
plexity in time of O (nMn), where Mn = #F n

m = (n+m−1
m−1

)
as dis-

cussed in Section 2.1. It is the setting of Problem 1 in Section 2.4.
We will then present SLOS_gen in Section 3.2, when sets of in-
puts are outputs are allowed. It is the setting of Problem 2 in
Section 2.4. We conclude in Section 3.3 with the presentation of
SLOS_hyb, a simulation algorithm parameterised by a general
cost function, and able to capture not only both weak and strong
simulation, but also specific, crafted problems.

3.1. SLOS_full: computation of the full output distribution of one
input

Given an input |s〉n
m = |s1, s2, . . . , sm〉n and a unitary U , UF |s〉n

m
can be computed with Equation (1). As

∑m
p=1 sp = n, the product

only contains n non-trivial terms, that can be arbitrary labelled as
p1, p2, . . . , pn , corresponding to the position of each photon. The
key idea of SLOS_full, presented in Algorithm 1, is to decom-
pose that product as follows:

m∑
in=1

uin,pn â†
i

⎛
⎝ m∑

in−1=1

uin−1,pn−1 â†
i

⎛
⎝. . .

⎛
⎝ m∑

i1=1

ui1,p1 â†
i |0〉m

⎞
⎠ . . .

⎞
⎠

⎞
⎠

(4)

With this chosen order, we iteratively obtain the output of a state
with k + 1 photons from the output of a state with k photons. To
understand more closely how SLOS_full works, let’s first write
the desired output state as:

UF |s〉n
m = UF

(
â†

pn â†
pn−1 . . . â†

p1 |0〉m∏m √
sp !

)

p=1

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Algorithm 1: SLOS_full with one input |s〉n
m computing the full distribution UF |s〉n

m . Each coefficient 〈t|UF |s〉 will be stored in an
array UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised
at 0. For simplicity, the array UF is of size O

(
(n

m + 1)Mn
)
, even though it could be optimised to O (Mn−1 + Mn), by reallocating memory and

erasing the intermediary states, as shown below in the comment.
Global UF
Function SLOS_full(|s〉n

m , U):
UF [|0〉][|0〉] ← 1 ;

IS = [(|0〉0
m , p1

)
, . . . ,

(|s〉n−1
m , pn

)]
; // chosen arbitrarily, see Equation (4)

for k : 0 → n − 1 do
|s〉 , p ← IS [k] ;
for |t〉 ∈ F k do

for i ∈ [m] do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t1, . . . , ti + 1, . . . , tm〉] +=

√
ti + 1

sp + 1
× U [i][l] × UF [|s〉][|t〉] ;

end
// Possible memory optimization here: we don’t need UF [|s〉][|t〉] anymore

end
end
and notice that for k = 0 to n − 1 we have:

UF
(

â†
pk+1

|s〉k
m

)
=

m∑
i=1

ui,pk+1 â†
i

(
UF |s〉k

m

)
(5)

Note that the normalisation factor can either be computed at
each step k (as in Algorithm 1), or at the end for the final dis-
tribution UF |s〉n

m: in this case, the global normalisation factor is
1/�m

p=1

√
sp ! (as in Equation (1)).

Following Equation (4) and Equation (5), we obtain the full out-
put distribution of |s〉n

m , along with the full output distribution of
intermediary states having from 0 to n − 1 photons. We will de-
note these intermediate states as |s〉k

m and they will be stored in
a list IS of tuples: [(|0〉0

m , p1), . . . , (|s〉n−1
m , pn)] where |s〉k

m is the
Fock state |s〉k−1

m with one more photon in the mode pk .
In practice, obtaining the full distribution UF |s〉k

m =∑
|t〉∈F k

m
〈t|UF |s〉k

m |t〉 means computing and storing every coef-

ficient 〈t|UF |s〉k
m for |t〉 ∈ F k

m . We store each of them in an
array, where each coefficient of UF |s〉k

m is used for the com-

putation of UF |s〉k+1
m . Note that in the sum of Equation (5),

â†
i 〈t|UF |s〉k

m |t〉 = √
ti + 1 〈t|UF |s〉k

m |t1, . . . , ti + 1, . . . , tm〉, which
adds a new term for 〈t1, . . . , ti + 1, . . . , tm|UF |s〉k+1

m as in the for-
mula of Algorithm 1.

Time complexity SLOS_full computes the full distribution of an
input |s〉n

m in O (nMn). The complexity can be directly deduced
from the three “for loops” of Algorithm 1, knowing that #F k

m =(k+m−1
m−1

) = Mk . The total number of operations is:

n−1∑
k=0

mMk = m
n

m
Mn = nMn

The complexity is therefore linear in the number of states, so
each state needs O (n) operations in average.

Exponential gain from the permanent-based method We would now
compare that complexity to the permanent-based method, which
would compute every term independently using the permanent al-
gorithm of [18]. Therefore, we need to sum over all the possible
outputs states the term n

∏m
i=1(ti+1)

min
tl
=0

(tl+1)
. To simplify the expression of

the sum, we will use a lower bound, considering n ≥ 1 so that
min
tl
=0

(tl + 1) ≤ n + 1 ≤ 2n. We therefore have the following lower

bound:
5

1

2

∑
|t〉∈F n

m

m∏
i=1

(ti + 1) ≤
∑

|t〉∈F n
m

n

∏m
i=1(ti + 1)

min
tl
=0

(tl + 1)

As shown in the Lemma 2 of [17], the sum of the left-hand side is
equal to

(2m+n−1
n

)
, giving our lower bound of �

(2m+n−1
n

)
. To com-

pare with the time complexity of SLOS, we can study the ratio
(2m+n−1

n)
nMn

= 1
n

(2m+n−1
n)

(n+m−1
n)

. By assuming m = θn and for a fixed value θ ,

(cf Corrollary 2 of [17]), we can apply Stirling’s formula to show
the ratio is �(1

n ρn
θ) with ρθ = (2θ+1)2θ+1

(4θ)θ (θ+1)θ+1 , showing the exponen-
tial speedup of SLOS. Note that ρ1 ≈ 1.69, ρ2 ≈ 1.80, and that
lim

θ→∞ρθ = 2.

Memory complexity At the step k, we need to use a memory of at
most O

(
Mk + Mk+1

)
, as we use all the coefficients of UF |s〉k

m to
compute and store the new coefficients of UF |s〉k+1

m . At the end of
the step k, we can erase all the coefficients of the step k − 1.

Therefore, at the last step, we have stored at most Mn−1 + Mn ≤
2Mn = O (Mn) coefficients. Thus, if we allow reallocation, the com-
plexity in memory is in O (Mn). As we aim for the full distribu-
tion containing Mn amplitudes, we necessarily need a memory of
O (Mn). SLOS_full has therefore an optimal complexity in mem-
ory.

It is important to highlight for a simple allocating, we need
Mn−1 + Mn space which can still be inconvenient for big values
of n and m. We can reduce the overhead by only allocating the
memory of UF [|s〉k+1][|t1, . . . , ti + 1, . . . , tm〉] when needed, and
by erasing coefficients as soon they have been used as in Algo-
rithm 1. We can optimise even more by ordering F k

m so that for
consecutive |t〉 , the coefficients |t1, . . . , ti + 1, . . . , tm〉 overlap and
less memory is added at each iteration of a new |t〉 . The memory
optimisation can also only be done for the last steps as they are
the most costly.

For faster overhead in time and easier implementation, we
would rather store all the coefficients of the intermediary states
without erasing them. This would require to store

∑n
k=0 Mk =

(n
m + 1)Mn states, which is still feasible for reasonable values of

m and n.

3.2. SLOS_gen: computation of several outputs for several inputs

The algorithm SLOS_full always computes the full output
distribution, and does not offer any granularity by restricting the
set of outputs states. However, often we may not need the full dis-
tribution for a given input. It is the case when we are looking for
one coefficient or specific coefficients, as for post-selected or her-
alded scheme introduced in Section 2.4.

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Algorithm 2: SLOS_gen with a set of q inputs I and a set of r outputs O. Each coefficient 〈t|U |s〉 will be stored in a dictionary or an
array UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised
at 0. For simplicity, the array UF is of size O

(
q(n

m + 1)Mn)
)
, even though it could be optimised by reallocating memory and erasing

the intermediary states.
Global UF
Function SLOS_Rec(k, F k+1

SM , U):
if k > 0 then

SLOS_Rec(k − 1, F k
SM , U) ; // Build with Equation (7)

end
for (|s〉 , p) ∈ IS [k] do

for |t〉 ∈ F k+1
SM do

for i ∈ [m] when ti
= 0 do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t〉] +=

√
ti

sp
× U [i][p] × UF [|s〉][|t1, . . . , ti − 1, . . . , tm〉]

end
end

end
Function SLOS_gen(I, O, U):

UF [|0〉][|0〉] ← 1 ;

IS =
[{(|0〉0

m , pi
1

)}
, . . . ,

{(∣∣si
〉n−1
m , pi

n

)}]
; // As in Algorithm 3

SLOS_Rec(n − 1, O, U) ;
3.2.1. Restriction of the subcomputation space: mask
In order to efficiently restrict the output distribution, we intro-

duce the notion of a mask, a state which will filter out unnecessary
intermediary states. We define the relation ≤ as: |t〉m ≤ |M〉m ⇔∧m

i=1(ti ≤Mi), and we define F k
≤M = {|t〉∣∣ |t〉 ∈ F k

m, |t〉 ≤ |M〉m

}
.

For a set of masks SM , we will note as F k
SM all the states we

compute at the step k.
At the step k of the computation, we compute each coefficient

as follows:

〈t|UF |s〉k = 1√
spk

∑
i,ti
=0

√
tiui,pk 〈t1, . . . , ti − 1, . . . , tm|UF |s〉k−1

(6)

As |t〉k ∈ F k
≤M ⇒ {|t1, . . . , ti − 1, . . . , tm〉 , ti
= 0} ⊂ F k−1

≤M , for
any mask M, the set {〈t|UF |s〉k, |t〉 ∈ F k

≤M } can be computed with
{〈t|UF |s〉k−1, |t〉 ∈ F k−1

≤M }. For each k, it is sufficient to compute the

states F k
SM =

{
F k

≤M
∣∣∣M ∈ SM

}
. The number of intermediary states

is therefore #F k
SM instead of Mk for the full distribution in Sec-

tion 3.1. Given a set of outputs O = {|o〉n
m , |o〉n

m ∈ F n
m} we would

like to compute, we can take F k
SM = ∪o∈OF k≤o , so that at the last

step we have F n
SM =O.

Unlike the iterative presentation of SLOS_full, it is here more
natural to have a recursive procedure, as we can directly build the
intermediary states as follows:

F k−1
SM =

{
|t1, . . . , ti − 1, . . . , tm〉 , ti
= 0, |t〉k

m ∈ F k
SM

}
(7)

This makes it possible to build F k−1
SM from F k

SM on the fly without
precompiling anything.

3.2.2. The SLOS_gen algorithm
Shown in Algorithm 2, SLOS_gen starts with F n

SM =O. The re-
cursive computation of intermediary states is directly derived from
Equation (6): SLOS_rec(F k

SM) computes {〈t|UF |s〉k, |t〉 ∈ F k
SM }

from {〈t|UF |s〉k−1, |t〉 ∈ F k−1
SM } given by SLOS_rec(F k−1

SM).
However, unlike the case of SLOS_full, we are also comput-

ing the outputs of several input states at the same time. It is in
fact possible to take advantage of the similarities in the inputs, by
changing the order of computation of Equation (1).
6

Several inputs Let us consider two inputs |s〉n
m and

∣∣s′〉n
m , having j

photons in common modes. Without loss of generality, we can
write them as |d1 + c1, . . . ,dm + cm〉 and

∣∣d′
1 + c1, . . . ,d′

m + cm
〉
,

with di, d′
i, ci ≥ 0 and

∑m
i=1 ci = j. We can therefore first compute

UF |c1, . . . , cm〉m = ∏m
p=1(

∑n
i=1 ui,p â†

i)
cp |0〉m , common term of

both UF |s〉n
m and UF

∣∣s′〉n
m . We can notice that |c〉 j

m =∣∣min(s1, s′
1), . . . ,min(sm, s′

m)
〉

and so j = ∑m
i=1 min(si, s′

i).
More generally, with a set of inputs, we can always factor-

ize the common terms, and use it in the computation to reduce
the number of intermediary states. It is especially efficient when
the common term is the same for all the inputs, as it is the
case when we add ancilla photons for all different inputs, as in
|∗,∗, . . . ,∗,1,1,1〉.

When there are many inputs, we want to build IS that implies
the minimum number of operations. This time, IS will be a list
of sets, where IS [k] is the set of tuples

(∣∣si
〉k
m , pi

k

)
to compute

at the step k. Let’s note I2 as the set of all distinct pairs of I2.
If we have p ≥ 2 inputs, then we would choose one of the biggest
common term among all pairs of I2. Therefore, we would take one
element of:

argmax
(|s〉,|s′〉)∈I2

m∑
i=1

min(si, s′
i) (8)

We then remove the chosen pair (|s〉 ,
∣∣s′〉) from I, and add

|min(s1, t1), . . . ,min(sm, tm)〉m both to I and to IS , with arbitrary
paths from that state to |s〉 and

∣∣s′〉 . The procedure will continue
until p = 1, where we will just add the last input in I S , with an ar-
bitrary path, as in Equation (4). The pseudocode is the Algorithm 3.

Example To illustrate the correspondence between I and IS , we
give the steps for the computing the coefficients associated to
{|1,0,0,1〉 , |1,1,1,2〉 , |1,1,2,1〉}.

1. This is the initial input to the procedure, and IS is empty:
I = {|1,0,0,1〉 , |1,1,1,2〉 , |1,1,2,1〉}, IS = [{}, {}, {}, {}, {}]

2. We look for the best common factor between the three
inputs (the biggest common term of Equation (8)): it is
|1,1,1,1〉, factor of |1,1,1,2〉 and |1,1,2,1〉. So now I =
{|1,0,0,1〉, |1,1,1,1〉}, and IS is populated with the oper-
ations needed to recover the two elements being factored:
IS = [{}, {}, {}, {}, {(|1,1,1,1〉 , 4), (|1,1,1,1〉 , 3)}]

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Algorithm 3: Construction of IS . The function path(|t〉 → |s〉) returns an arbitrary path from |t〉 to |s〉 as in Equation (4).
IS = [{} for i ∈ [m]]
while #I ≥ 2 do

argmax,max ← None,0
for (|s〉 ,

∣∣s′〉) ∈ {
(|s〉 ,

∣∣s′〉) ∈ I2, |s〉
= ∣∣s′〉} do
k = ∑m

i=1 min(si , s′
i)

if k>max then
argmax,max← (|s〉 ,

∣∣s′〉), k
end

end
if max=0 then

// No factorisation found: we add the paths of all remaining elements in IS and empty I
for |s〉 ∈ I do

for (|t〉i
m , l) ∈ path(|0〉m → |s〉) do

IS [i].add((|t〉i
m , l))

end
end
I.clear()

end
else

// Factorisation for a pair found: we add the paths of the elements of the pair in IS, remove them from I, and
add the factor in I

(|s〉 ,
∣∣s′〉) ← argmax∣∣mins,s′

〉 ← ∣∣min(s1, s′
1), . . . ,min(sm, s′

m)
〉

for |s�〉 ∈ (|s〉 ,
∣∣s′〉) do

for (|t〉i
m , p) ∈ path(

∣∣mins,s′
〉 → |s�〉) do

IS [i].add((|t〉i
m , p))

end
I.remove(|s�〉)

end
I.add(

∣∣mins,s′
〉
)

end
end
if #I == 1 then

// One element remaining: we add its path in IS

|s〉 ← I.pop()

for (|t〉i
m , p) ∈ path(|0〉m → |s〉) do

IS [i].add((|t〉i
m , l))

end
end

Table 1
Time and memory complexity analysis of SLOS_gen and [18] for a generic output |t〉 = |t1, . . . , tm〉 ∈
F n

m , where Mn = #F n
m = (m+n−1

n

)
. We highlighted the SLOS values in bold when they were similar or

better than the permanent-based ones. For the memory complexity of the one output case, we consider
the worst case, as detailed in 3.2.3. For the memory complexity of the full distribution case, we consider
the problem of storing every value, therefore needing at least O (Mn) of memory. If we consider the
enumerating problem instead, the permanent-based method would have a memory complexity of O (n),
far better than the O (Mn) of SLOS. It is an open problem to how much the memory efficiency can be
increased.

Time Complexity Memory Complexity

#Outputs One All One All

Permanent-Based [18] O

(
n

∏m
i=1(ti +1)

min
tl
=0

(tl+1)

)
�

(2m+n−1
n

)
O (n) O (Mn)

SLOS_gen O
(m∑

i=1
ti

∏
j �=i(t j + 1)

)
O (nMn) O

(n
n/2

)
O (Mn)
3. The next step is similar, with the difference that the com-
mon factor is a term to be computed (so we keep it). I =
{|1,0,0,1〉}, and IS = [{}, {}, {(|1,0,0,1〉 , 2)}, {(|1,1,0,1〉 , 3)},
{(|1,1,1,1〉 , 4), (|1,1,1,1〉 , 3)}]

4. Finally, we can empty I: I = {}, and IS = [{(|0〉4 , 1)},
{(|1,0,0,0〉 , 4)}, {(|1,0,0,1〉 ,2)}, {(|1,1,0,1〉 , 3)} , {(|1, 1, 1, 1〉,
4), (|1,1,1,1〉 , 3)}]

Complexity of SLOS_gen The theoretical complexity of the algo-
rithm SLOS_gen is difficult to assess because it heavily depends
on the redundancy in input and output states. In Section 3.2.3 we
analyse the limit case where only one input and one output are
considered, and how it relates to the permanent-based method of
7

[18]. The results are summarised in the Table 1. In Section 4, we
present a concrete implementation of SLOS_gen in the general
case, and we discuss concrete benchmarks.

3.2.3. Limit case with one output/one input
The algorithm SLOS_gen can be specialized to the case where

one only consider one input and one output state. This is the
typical case that can be directly handled by [18]: it consists in
computing Equation (2), so one can rely on the complexity results
for computing the permanent of a matrix with potential repeated
row or columns.

In this section, we discuss the complexity of the procedure in
this simple one-input, one-output case, and compare it with [18].

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
Conjugate trick While it is usually more physical to have one pho-
ton at most per mode in the input |s〉n

m , if |s〉n
m has more repeti-

tion than the output |o〉n
m , it is faster and equivalent to compute

〈s|U†
F |o〉† than 〈o|UF |s〉 . That trick of taking the conjugate trans-

pose allows to transform the repetitions of the columns into the
repetition of the rows if necessary, so the number of computation
is reduced as much as possible. However, that trick is not general,
as it is for a specific instance of one output, and needs more rep-
etitions in the input, that is not very likely in practice with single
photon sources. In the following, we will consider a generic input
|s〉 and only consider the repetitions in the output |t〉.

Worst case To efficiently compute the output 〈o|UF |s〉n
m , one

has to take the mask |M〉m = |o〉n
m . The worst case is when the

mask is of the form |1,1, . . . ,1,0, . . . ,0〉n , as it maximises the
size of F k

≤M for each k. In that case, #F k
≤M = (n

k

)
, and each

term needs k operations, as it is the number of terms in the
sum of Equation (6). Therefore, the number of needed opera-
tions is

∑n
k=1 k

(n
k

) = n2n−1. The complexity therefore matches
the time complexity for computing a general permanent, as
〈1, . . . ,1,0, . . . ,0|UF |1, . . . ,1,0, . . . ,0〉 is computed by the per-
manent of a matrix without any repetition of rows or columns.

General case For each state |t〉m ∈ Fm , let’s define αt = #{ti
=
0, 1 ≤ i ≤ m}. From Eq. (6), we can see that every 〈t|UF |s〉k needs
αt computations, using the already computed coefficients. Given
an output state |t〉, we will compute every

∣∣t′〉 ≤ |t〉 where ≤ is
defined in 3.2.1. Therefore, the number of computations is S(|t〉) =∑
|t′〉≤|t〉

αt′ . For the proof, we will use the notation |t〉k = |t1, . . . , tk〉,

restriction of |t〉m = |t〉. To give a generic formula of S , we proceed
by induction by defining Sk(|t〉) = ∑

|t′〉≤|t〉k

αt′ , with Sm(|t〉) = S(|t〉)
and S1(|t〉) = t1. We can show that

Sm(|t〉) = ∑
|t′〉≤|t〉,t′m=0

αt′ +
tm∑

k=1

∑
|t′〉≤|t〉,t′m=k

αt′

= Sm−1(|t〉) +
tm∑

k=1

∑
|t′〉≤|t〉m−1

(αt′ + 1)

= Sm−1(|t〉) + tm Sm−1(|t〉) + tm
∑

|t′〉≤|t〉m−1

1

= (tm + 1)Sm−1(|t〉) + tm

m−1∏
i=1

(ti + 1)

Leading to the following formula:

S(|t〉) =
m∑

i=1
ti

∏
j
=i

(t j + 1)

We can show that it is always less than the bound found in [18]:

m∑
i=1

ti
∏
j
=i

(t j + 1) = ∑
ti
=0

ti
∏
j
=i

(t j + 1)

≤ ∑
ti
=0

ti
1

min
tl
=0

(tl+1)

m∏
j=1

(t j + 1)

=
(∏m

j=1(t j+1)

min
tl
=0

(tl+1)

) ∑
ti
=0

ti

= n

(∏m
j=1(t j+1)

min
tl
=0

(tl+1)

)

That bound is strict whenever there are two ti > 0, t j > 0 such that
ti
= t j .
8

Average case For each state |t〉k
m ∈ F k

m , for each ui,∗ with i ∈
[m], the term ui,∗ 〈t|UF |s〉k will be used as many times as
|t1, . . . , ti + 1, . . . , tm〉k+1 ≤ |M〉n

m with |M〉n
m ∈ F n

m . We can show
that the number of time is Mn−k−1, which is the number of
putting n − k − 1 photons into m modes, as |M〉 is necessarily
of the form |t1 + q1, . . . , ti + 1 + qi, . . . , tm + qm〉 with qi ≥ 0 and ∑

i qi = n − k − 1.
As there are Mn different output states, we can show the aver-

age number of operation for computing one output is:

1

Mn

n−1∑
k=0

mMk Mn−k−1 = m

Mn

(
2m + n − 2

n − 1

)

= n

Mn

(
2m + n − 1

n

)
m

2m + n − 1

It is therefore the same average complexity of [17] (cf. the
Corollary 3 for the precise formula), with a multiplicative ratio of

m
2m+n−1 < 1.

Memory complexity Even if SLOS_gen is better in time for one
input and one output than [18], it is important to highlight it is
far more costly in memory. Given an output state |t〉n , at the step
k, we need to store all the coefficients 〈t|UF |s〉k−1 and 〈t|UF |s〉k ,

with |t〉k−1 ≤ |t〉k ≤ |t〉n . As #
{
|t〉k ≤ |t〉n

}
doesn’t have a simple

formula [39], we will only consider the worst case. The worst
case is when |t〉 has at most one photon per mode, for instance
when |t〉 = |1,1, . . . ,1,0, . . . ,0〉n . In that case, the number of space
needed at each step is O

((n
k

))
. As we only need to store the val-

ues of two steps, and not all the n steps, we can only consider the
costliest which is when k = n/2. The worst case space complexity
is therefore O

((n
n/2

))
.

3.3. SLOS_hyb: general procedure for both weak and strong
simulations

This section presents SLOS_hyb (shown in Algorithm 4), a hy-
brid of weak and strong simulation. It can be seen as an extension
of SLOS_gen, with an iterative procedure and a recursive subrou-
tine.

Let us denote F k
S the set of intermediary states computed at the

step k with Equation (6). In Section 3.1 we were interested in com-
puting every state, so F k

S = F k
m , while in Section 3.2 we had masks

to compute specific outputs, so F k
S = F k

SM . For the hybrid version
in Algorithm 4, we use a Select function to select the next in-
termediary states we would like to compute, so F k+1

S is defined
as Select(F k

S). In order to compute all coefficients in F k+1
S , we

use SLOS_Rec with the particularity to only compute intermedi-
ary states that have not been computed so far, and we directly use
the intermediary states needed for the coefficients of F k

S . We can
code that information in a Boolean array (or a hash table) B such
that B[|s〉][|t〉] is true if UF [|s〉][|t〉] has been computed, false oth-
erwise.

For strong simulations, we are aiming at computing the proba-
bilities of a given set of outputs. However, sometimes we would
like to compute the states with the biggest probabilities, with-
out knowing in advance the probability distribution of the set of
outputs. More generally, we would like to compute outputs giving
conditions on the distribution even if we don’t know it yet. For
instance, SLOS_hyb can solve the following problem.

Problem 3: hybrid simulation Given an input |s〉n
m , a threshold η

and a LO-circuit of m modes mapping a unitary U : m × m, can we
obtain a set O = {|t〉 , |t〉 ∈ F n

m

}
such that

∑
|t〉∈O

∣∣〈t|UF |s〉∣∣2
> η?

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Algorithm 4: SLOS_hyb with one input |s〉n
m and Select function. Each coefficient 〈t|U |s〉 will be stored in a dictionary or an array

UF and will be accessed by UF [|s〉][|t〉]. The access of the coefficient ui,p will be labelled as U [i][p]. Every coefficient of UF is initialised at
0. For simplicity, the array UF is of size O

(
(n

m + 1)Mn
)
. The Select function enables to do Strong simulation without or with masks, weak

simulation, or a mix of them. B is an array or dictionary initialised at False and stores the coefficients already computed, so we don’t need to
recompute UF [|s〉][|t〉] if B[|s〉][|t〉] is true. F k

≤M ∩Bs is a shortcut for {|t〉 |(|t〉 ∈ F k
≤M) ∧ (B[|s〉][|t〉] == False)} .

Global UF , B
Function SLOS_Rec(k, IS , F k

S , U):
(|s〉 , p) ← IS [k]
if k > 1 then

SLOS_Rec(k − 1, IS , F k−1
S ∩Bs, U) ; // Build with Equation (7)

end

for |t〉 ∈ F k
S do

for i ∈ [m] when ti
= 0 do

UF [∣∣s1, . . . , sp + 1, . . . , sm
〉][|t〉] +=

√
ti

sp
× U [i][p] × UF [|s〉][|t1, . . . , ti − 1, . . . , tm〉]

end
B[|s〉][|t〉] ← True

end
Function SLOS_hyb(|s〉n

m , U , Select):
UF [|0〉][|0〉] ← 1 ;

IS = [(|0〉0
m , p1

)
, . . . ,

(|s〉n−1
m , pn

)]
; // chosen randomly from Equation (1)

F k
S = {|0〉}

for k : 1 → n do
F k

S ← Select(IS , F k
S , k)

SLOS_Rec(k, IS , F k
S , U)

end

return F k
S

Even though this problem can be solved with 2.4 and just tak-
ing a subset of the full distribution, we can have a more efficient
procedure by using the Algorithm 4 and the Select function of
Algorithm 5. Note the “while loop” adds several states in F .

Weak simulation The algorithm of [16] uses the probability chain
rule to sequentially sample photon by photon. At each step, some
probabilities are computed in order to sample the outputs |t〉k for
1 ≤ k ≤ n. At the end, we sample the desired sample |t〉n with n
photons from the desired distribution. To lighten the notation, we
will note tk = |t〉k , sk = |s〉k , and we will note p(tk|tk−1, sk) the
conditional probability to sample |t〉k conditioned on |t〉k−1 ≤ |t〉k ,
meaning we know the position of k − 1 photons in the output, and
conditioned on the input2 being |s〉k .
The main idea is to avoid directly sampling from p(tk), by notic-
ing we can equivalently sample from p(tk|sk), where the inputs
|s〉k are randomly chosen. Then, to sample from p(tk|sk), we use
the chain rule to sample from p(tk|tk−1, sk) instead, given we al-
ready sampled |t〉k−1. The technical points can be summarised as
follows3:

• We can show that p(tk) ∝ ∑
|s〉k≤|s〉n

p(tk|sk) ∝E|s〉k≤|s〉n

{
p(tk|sk)

}
,

with p(tk|sk) =
∣∣∣〈t|UF |s〉k

∣∣∣2
, and with the expectation value

summing uniformly over |s〉k ≤ |s〉n . (cf Lemma 1 and 3 of
[16]4).

• We sample from E|s〉k≤|s〉n

{
p(tk|sk)

}
instead than sampling

from p(tk). As the |s〉k are always uniformly distributed, we

2 In the case of Boson Sampling we generally have |s〉n = |1,1,1, . . . ,1,0, . . . ,0〉m .
3 We use ∝ to lighten the formula and disposing of factorials coefficients depend-

ing on k, n.
4 In that paper, the photon to mode encoding as described in Section 5.3 is used,

so the positions of the ith photon is described by ri ∈ [m]. Linking the notations,
we have p(rk|r1, . . . , rk−1) = p(tk|tk−1). Their α is a way to parameterise the per-
mutation of the columns, representing the order of the input photons. Therefore
considering a random permutation α1, . . . , αn is equivalent to consider a random
order

{
|s〉k ,1 ≤ k ≤ n

}
of the inputs.
9

can first uniformly sample the order
{
|s〉k ,1 ≤ k ≤ n

}
, and

then sample from the p(tk|sk) distribution.
• To sample from p(tk|sk), we use the chain rule. For a fixed

order
{
|s〉k ,1 ≤ k ≤ n

}
- randomly sampled at the step 2 - we

have p(tn|sn) = p(t1|s1)p(t2|t1, s2) . . . p(tn|tn−1, sn). At the step
k, given the previous sample |t〉k−1, we sample the output |t〉k

from p(tk|tk−1, sk).

•
{

p(tk| |t1, . . . , tm〉k−1 , sk), |t〉k ≥ |t〉k−1
}

=
{∣∣〈t1, . . . , ti + 1, . . . ,

tm|UF |s〉k
∣∣2

, 1 ≤ i ≤ m
}

. We therefore compute those m per-

manents to compute the desired probabilities and sample |t〉k .

We will now explicit how SLOS_hyb in Algorithm 4 can perform
the weak simulation. To be clearer and slightly more efficient, the
commands in the for loop are inversed: we first compute the am-
plitudes with SLOS_Rec, and then we would use the Select
function to sample:

1. Given an input |s〉n , the random order s1 ≤ s2 ≤ · · · ≤ sn

is done by the random choice of IS . We initialise F k
S =

{|1,0, . . . ,0〉m , . . . , |0, . . . ,0,1〉m}.
2. The Select function at the step 1 ≤ k ≤ n and given a set of

states F k
S , will sample |α〉k from

{∣∣〈t|UF |s〉∣∣2
∣∣∣ |t〉 ∈ F k

S

}
. Then

if k < n, it will return the next values to compute, i.e. the set
{|α1, . . . ,αi + 1, . . . ,αm〉 , i ∈ [m]}. If k = n, then we are at the
last step, so we just can return the last sample {|α〉n}.

4. Implementation

In this section, we discuss the concrete implementation of
SLOS_gen, as found in Perceval [19].

To build-up intuition, Table 2 gives some orders of magnitude
to the quantities involved and Table 3 gives a quick equivalence of
these quantities in time and storage. Considering the exponential
number of values we are dealing with, our challenge is to opti-
mize as much as possible the memory structures and the details

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
Algorithm 5: Select function which answers to the Prob-
lem 3.

Function Select(IS , F k
S , k):

S ← 0
(|s〉 , �) ← IS [k]
F ← {}
while S ≤ η do

|t〉 = F k
S .pop()

S+= ∣∣〈t|UF |s〉∣∣2

F .add(|t〉)
end
return {|t1, . . . , ti + 1, . . . , tm〉 , |t〉 ∈ F , i ∈ [m]}

Table 2
Value of Mn for practical combinations of m and n.

n Mn for m = n Mn for m = 2n Mn for m = 3n

12 1.35 × 106 8.34 × 108 5.23 × 1010

14 2,01 × 107 3.52 × 1010 4.35 × 1012

16 3.01 × 108 1.5 × 1012 3.66 × 1014

17 1.17 × 109 9.85 × 1012 3.37 × 1015

18 4.54 × 109 6.46 × 1013 3.11 × 1016

20 6.89 × 1010 2.79 × 1015 2.65 × 1018

Table 3
Equivalency of 10k with concrete time and storage references.

time necessary for
single instructions
processed on a 1 GHz
computer

equivalent storage
size (any unit)

number of bytes
necessary to store
a pointer

106 1 milliseconds 0.95 Mega 3
108 0.1 seconds 95 Mega 4
1010 10 seconds 9.3 Giga 5
1012 17 minutes 903 Giga 5
1014 27 hours 90 Tera 6
1016 115d 8.8 Peta 7
1018 31 years 888 Peta 8

of the implementation to gain practical factors allowing to extend
the strong simulation for a few more photons.

In this section we assume that we have a fixed number of
modes m. We will first describe the memory structure we have
been introducing for the implementation of the algorithms. We
then discuss the implementation challenges and the optimization
tricks, and finally add a note on masking.

4.1. Memory structures

The two main memory structures will be labelled as fsarray
(Fock State Array) and fsimap (Fock State Inverse Map). fsar-
ray is mainly used to get indices used for building fsimap. Both
structures depend only on m and n and are independent of the
unitary matrix. During the actual simulation they will be used as
read-only structures containing the “calculation path”. It is thus
possible to pre-compute these structures and serialize them to
files. For the largest ones, it is also possible to use the files as a
memory-map.

fsarray - indexes of the Fock states Each fsarray(k) is an array
in charge of representing all the Fock states |s〉k

m and assigning a
unique ID to each of them. We want this structure to be search-
able, and to have the least memory footprint. For this we use
sequences S(|s〉k) = (p1, ..., pk) where pi is the position of the ith

photon in the Fock state |s〉k . For instance: S(|1,0,0,2〉) = (1, 4, 4),
which we denote ADD, mapping each number to an uppercase let-
ter for the sake of readability.

This representation of Fock states, which we call photon to mode
encoding, has the following nice properties:
10
k1 k2 kl

k1(k2 − 1)...kl(k1 − 1)k2...kl k1...(ki − 1)...kl

−1 −1 −1

Fig. 3. Representation of a cell of a fsimap(n): here the n photons are occupying l
mode, so we have n − l pointers not used.

1. It is ordered using an intuitive lexicographical order on the
(p1, ..., pk): e.g.

S(|1,0,0,2〉) = ADD> S(|1,1,1,0〉) = ABC.

Thus it is searchable.
2. The sequence S(|s〉) is iterable: (p1, ..., pk)

+1−→ (p′
1, ..., p

′
k),

where we can simply increment as follows: (a) p′
k = pk +

1 if pk < m, otherwise (b) we calculate pk−1 the same
way (possibly going to pk−2, . . . , p1) and pk = pk−1, e.g.
(1, 4, 4)/ADD

+1−→ (2, 2, 2)/BBB.
3. The sequence S(|s〉) can be represented in memory with a

fixed �log2(m)�-bit buffer.
4. It is more compact than mode to photon encoding for n < m.

This case is the most common use case with circuits with sin-
gle photon sources, as each input mode would have at most
one photon.

Properties 1 and 3 imply that, by binary search, it is possible to
find a specific Fock state in a fsarray in O (log2 Mk). Property
2 implies that it is even possible to not store the fsarray if we
are interested in all the Fock states since we can directly iterate
through them. Thus, we will only store fsarray(n), as the com-
putation of the states fsarray(k + 1) will only need the iteration
of fsarray(k) and the structure fsimap as detailed below.

fsimap - mapping between Fock states Our algorithms require that
we store a map between the “child” Fock states of k + 1 photons
|s〉k+1

m to the “parent” Fock states of k photons |s〉k
m (Fig. 3). We

call this structure fsimap(k + 1) and we need to build a list of n
fsimap, fsimap(n), fsimap(n − 1),..., fsimap(1).

For a Fock state to find its parent, we just need to remove one
photon. For instance for ADD we just remove a A or a D to reach
AD or DD. So more generally for each Mk+1 Fock state in F k+1

m we
need to store up to k + 1 indexes to the parent. Most of the time
we could store less, but we prefer keeping direct access to each
entry in the fsmap, so we are keeping for each state exactly k + 1
pointers.

The size of a layer is then: Sfsimap(k) = fsimap(k) is
�log256(Mk−1)� × k bytes.

So to summarize - starting from all the states in F k+1
m , we can

find their index idx thanks to fsa(k + 1). With the index, we can
find the location of the index to the parent states in fsa(k) by
direct memory access in fsimap(k + 1) to the position: idx × (k +
1) × Sfsimap(k) .5

The construction of fsimap is straightforward using the 2 in-
volved fsarray.

5 Note that we can get a more compact version of the fsimap(k) for k < n when
the size of the index to each state is 4-bytes long. Indeed in that case, we can then
get rid of the non-used cells for the parents pointers. We then lose the ability the
direct access through the fsa(k) index, but this index is only used when referred
to by child structure, so we can instead replace the index by the direct pointer to
the position of the state in memory.

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
4.2. Implementation optimization

All the implementation is done in C++ optimized with SIMD
vectorization. Some specific points:

1. Vectorization: Cross-platform SIMD vectorization is done
through MIPP [40] library6 supporting SSE, AVX, AVX-512 and
ARM NEON (32-bit and 64-bit) instructions. The main op-
eration that we are interested in is “horizontal vector sum
of complex number multiplication”. This operation is not a
primitive and is decomposed into the 3 MIPP primitives: in-
terleave, cmul, hadd.

2. The SLOS_full algorithm is fully iterative: for k = 1 to n the
coefficients corresponding to |s〉k+1

m are computed in one sin-
gle loop by iterating on the fsimap(n) structure. Each new
coefficient is a sum of products of unitary matrix coefficient
times coefficient of |s〉k

m . There is no overhead in the imple-
mentation.

3. Recursion: The SLOS_gen algorithm is recursive. Starting
from the index retrieved by binary search on fsaarray on
layer n, the expected coefficient (the probability amplitude) is
calculated by recursively retrieving the coefficients for all the
parents at level k − 1. To reduce overhead caused by recur-
sion, a bit vector is used to check if the parent coefficient is
not yet calculated before going recursive. Also, all the struc-
tures necessary for Vectorization are pre-allocated globally to
reduce overhead created by dynamic allocation on the stack.

4. Memory access: one major challenge for SLOS algorithms re-
sides in memory allocation. When pushed to the maximum
(say, 17 photons for 34 modes) - memory structures will use
several hundreds/thousands of gigabytes in memory. Each co-
efficient calculation needs parent coefficient scattered on this
memory range limiting possibility of processor to benefit from
hardware Lx memory caching. Compared to local permanent
calculation algorithm, this memory access time creates over-
head depending strongly on hardware configuration as seen in
Section 5.

5. Multithreading:
• Algorithm SLOS_full can be fully run on multiple threads

without additional overhead: for each k, we simply divide
the coefficients list by the number of threads.

• For algorithm SLOS_gen, multi-threading is more limited:
it is only possible to distribute top branches of the calcula-
tion.

In both cases, impact of the multi-threading is actually limited
by memory access: adding more threads on very large mem-
ory structure do not significantly increase the performance.

4.3. Masking

Let us note that the implementation proposed is fully compliant
with the notion of “masking” introduced in section 3.2.1: tech-
nically masking is a transversal optimization allowing to reduce
(potentially massively) the complete Fock state space and there-
fore reducing proportionally the time and storage.

The only location in the code impacted by masking is on
the fsaarray construction. To find all the masked items, we are
keeping the same global iterations on all possible Fock states, but
are skipping the ones that are not compliant with the mask. It is
likely that we could find a faster iteration method on masked Fock
states, however, since this only impacts pre-computing, we don’t
need a special optimization.

6 https://github .com /aff3ct /MIPP.
11
Fig. 4. Comparative performance of Glynn and SLOS for calculation of a single
n ×n permanent 128-bit complex numbers. The green curve is the n2n curve renor-
malised with the first point of the SLOS curve. Benchmark computes 100 perma-
nents in a row and outputs the mean time. The benchmark is run on a Intel Core
i7-10510U with 16GB of memory. (For interpretation of the colours in the figure(s),
the reader is referred to the web version of this article.)

Once the pre-computed memory structures detailed below are
built, there is no difference in implementation when simulating on
a masked or non-masked system.

5. Performance

In this section, we discuss practical aspects of SLOS. We first
show a typical use case demonstrating the need of strong simula-
tions and effectiveness of our implementation in Section 5.1. We
then discuss possible limitations. In Section 5.2, we compare per-
formance of SLOS for a single output with at most one photon
per mode compared to Glynn’s algorithm, state of the art algo-
rithm for computing the permanents of generic matrices. Finally,
in Section 5.3 we analyze the space limitation of strong simulation
using our algorithm.

5.1. A typical QML application requiring strong simulation

Using the framework Perceval [19], we have implemented7 the
simulation of [22], using a generic m ×m interferometer and its full
output probability distribution to train a model solving differential
equations. For an evolving configuration of the circuit, the algo-
rithm has to iterate on all output states |t〉n

m corresponding to input
state |1,1, ...,1〉n . Based on Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimiser [41], the algorithm converges in 200-400 itera-
tions, each of them needing thousands of full distribution compu-
tations. Table 4 shows the evolution of Mn for different values of n
and the time necessary for 150 iterations of the algorithm compar-
atively with the direct calculation of Mn permanent with Glynn’s
algorithm and SLOS_full algorithm. Use of SLOS_full prac-
tically allows pushing of simulation from 6 photons (processed in
2 min with SLOS_full and 11 h without) to 10 photons.

5.2. Benchmarking SLOS_gen for one output

We compare in Fig. 4 the speed of our algorithm to compute
a single permanent in the worst possible situation, i.e. when the
output is |1,,1〉, with a traditional permanent calculation algo-
rithm. We selected the algorithm from Glynn [15] as [19] shows

7 Details of the algorithm can be found at https://perceval .quandela .net /docs /
notebooks /Differential %20equation %20solving .html.

https://github.com/aff3ct/MIPP
https://perceval.quandela.net/docs/notebooks/Differential%20equation%20solving.html
https://perceval.quandela.net/docs/notebooks/Differential%20equation%20solving.html

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848

Table 4
In this table, we compare time of QML algorithm to perform 150 optimization iterations with both Permanent-
Based and SLOS algorithms. This application is the ideal use case of SLOS since we are interested into the full
output states exact distribution.

Number of photons n

2 3 4 5 6 7 8 9 10 11

Mn 3 10 35 126 462 1716 6435 24310 92378 352716
Permanent-Based 36s 3m 16m 1h30 11h 3d not possible
SLOS 14s 15s 29s 73s 2m 5m 22m 1h45m 10h 2d8h
Fig. 5. This graph shows four regions for (m, n) combinations. In blue - m ≥ n with
configurations that can run on a personal laptop (up to 8Gb memory). Curves in
orange/red/black are the respective limits of 256Gb/4Tb/1Pb memory. For instance,
strong simulation with SLOS of 24 photons on a 24 modes circuit would require
1500T b of processing memory!

that for up to 19 modes, this algorithm is practically one of the
most efficient.

The curves do not show the precompilation time needed for
SLOS nor the allocation of the Fock states. We can see that the
practical time for SLOS is better for small cases, and that, as pre-
dicted by the complexity analysis, the growth is very close to the
n2n curve. This is even true for small instances.

The code for Glynn’s algorithm developed in Perceval [19]
makes heavy use of hardware optimizations, and shows a speedup
compared to SLOS when n > 12. The speedup has a multiplica-
tive factor between 2 and 4 depending on the machine. On Fig. 4,
the factor is around 4 for large values of n. Indeed, as the data
in Glynn’s algorithm is local, one can rely on efficient libraries to
sumprod the terms, improving the time of the computations. Due
to the structure of the algorithm (because of the heavy use of pre-
computed data), SLOS cannot make use of these optimizations.
One has however to note that without these hardware-specific op-
timizations, there is no particular speedup for Glynn’s algorithm
compared to SLOS.

5.3. Memory usage

Finally, since SLOS_gen is making intensive use of memory,
we have computed in Fig. 5 the practical limitations of strong sim-
ulation. The graphics vertical axis is the number of modes m, and
the horizontal axis the number of photons n. We are only inter-
ested in m ≥ n, and we have drawn boundaries of three typical
workstations. In blue, computer with up to 8Gb of memory - typi-
cally any modern laptop. In orange, the limit of 256 Gb memory -
typically a large compute node. Any (m, n) point below the orange
curve will fit in 256 Gb memory. The red curve represents mem-
ory need up-to 4 Terabytes memory representing a very large HPC
node. The black curve represents a potential super-computer with
12
up to 1 Petabyte of memory. As of today technology this boundary
can be considered as an area unreachable for strong simulation,
and so for a full description of linear optical processes.

6. Conclusion

In this paper, we presented a versatile framework for the simu-
lation of linear optical circuits, with a trade-off between time and
memory usage. An efficient implementation is provided and we
discuss how it outperforms the permanent-based algorithms. It is
an open problem to determine to what extent the memory usage
of SLOS can be improved, or to what extent the time complex-
ity of the permanent-based method can be improved with more
memory. As a future work, we plan to incorporate noise models,
and validate the simulations against physical hardware.

Declaration of competing interest

The authors declare no competing interest.

Data availability

Data will be made available on request.

Acknowledgement

The authors would like to thank Rawad Mezher and Timo-
thée Goubault de Brugière for helpful discussions and references,
and the two reviewers for their very valuable comments, that
have greatly improved the quality of the paper. This work is sup-
ported by the PEPR integrated project EPiQ ANR-22-PETQ-0007
part of Plan France 2030 and by the CIFRE 2022/0081. It is also
supported by the French National Research Agency (ANR) under
the research projects SoftQPro ANR-17-CE25-0009-02, by the STIC-
AmSud project Qapla’ 21-STIC-10, and by the BPI France Concours
Innovation PIA3 projects DOS0148634-00, DOS0148633-00.

References

[1] Peter W. Shor, in: Proceedings 35th Annual Symposium on Foundations of
Computer Science, IEEE, 1994, pp. 124–134.

[2] Charles H. Bennet, in: Proc. of IEEE Int. Conf. on Comp. Sys. and Signal Proc.,
Dec. 1984, 1984.

[3] Gilles Brassard, Found. Phys. 33 (11) (2003) 1593–1616.
[4] Alexia Auffèves, PRX Quantum 3 (2) (2022) 020101.
[5] Daniel Jaschke, Simone Montangero, Quantum Sci. Technol. 8 (2) (2023)

025001, https://doi .org /10 .1088 /2058 -9565 /acae3e.
[6] Rudolph Terry, APL Photon. (ISSN 2378-0967) 2 (3) (2017), https://doi .org /10 .

1063 /1.4976737.030901.
[7] Scott Aaronson, Alex Arkhipov, in: Proceedings of the Forty-Third Annual ACM

Symposium on Theory of Computing, STOC ’11, Association for Computing Ma-
chinery, ISBN 978-1-4503-0691-1, 2011, pp. 333–342.

[8] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-
Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun
Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen
Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan, Science 370 (6523) (2020)
1460–1463, https://doi .org /10 .1126 /science .abe8770.

[9] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei
Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng

http://refhub.elsevier.com/S0010-4655(23)00193-5/bib1922766B8492F28543D278FFB3EA8BBFs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib1922766B8492F28543D278FFB3EA8BBFs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib142FF1BDBDF03F3219EB15FC6F814686s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib142FF1BDBDF03F3219EB15FC6F814686s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibEA9F591E69B20B1CBF2623B51C553843s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC5AABFD1C89798509F8A7100D96EA43Bs1
https://doi.org/10.1088/2058-9565/acae3e
https://doi.org/10.1063/1.4976737.030901
https://doi.org/10.1063/1.4976737.030901
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib08657B450257F7BDAB2052FE42A27193s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib08657B450257F7BDAB2052FE42A27193s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib08657B450257F7BDAB2052FE42A27193s1
https://doi.org/10.1126/science.abe8770

N. Heurtel, S. Mansfield, J. Senellart et al. Computer Physics Communications 291 (2023) 108848
Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-
Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin,
Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu
Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jiang-
han Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang,
Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang
Lu, Cheng-Zhi Peng, Xiaobo Zhu, Jian-Wei Pan, Phys. Rev. Lett. 127 (18) (2021)
180501, https://doi .org /10 .1103 /PhysRevLett .127.180501.

[10] E. Knill, R. Laflamme, G.J. Milburn, Nature (ISSN 1476-4687) 409 (6816) (2001)
46–52, https://doi .org /10 .1038 /35051009.

[11] Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson,
Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mi-
hir Pant, et al., Nat. Commun. 14 (1) (2023) 912.

[12] G. Valiant Leslie, Theor. Comput. Sci. (ISSN 0304-3975) 8 (2) (1979) 189–201,
https://doi .org /10 .1016 /0304 -3975(79)90044 -6.

[13] Stefan Scheel, Permanents in linear optical networks, Available as arXiv:quant -
ph /0406127, 2004.

[14] Herbert John Ryser, Combinatorial Mathematics, The Carus Mathematical
Monographs, vol. 14, American Mathematical Society, ISBN 9781614440147,
1963.

[15] David G. Glynn, Eur. J. Comb. (ISSN 0195-6698) 31 (7) (2010) 1887–1891,
https://doi .org /10 .1016 /j .ejc .2010 .01.010.

[16] Peter Clifford, Raphaël Clifford, in: Proceedings of the 2018 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Proceedings, Society for Industrial
and Applied Mathematics, 2018, pp. 146–155.

[17] Peter Clifford, Raphaël Clifford, Faster classical boson sampling, Available as
arXiv:2005 .04214, 2020.

[18] Valery Shchesnovich, On the classical complexity of sampling from quantum
interference of indistinguishable bosons, Available as arXiv:1904 .02013, 2019.

[19] Nicolas Heurtel, Andreas Fyrillas, Grégoire de Gliniasty, Raphaël Le Bihan,
Sébastien Malherbe, Marceau Pailhas, Boris Bourdoncle, Pierre-Emmanuel Eme-
riau, Rawad Mezher, Luka Music, Nadia Belabas, Benoît Valiron, Pascale Senel-
lart, Shane Mansfield, Jean Senellart, Quantum 7 (2023) 931, https://doi .org /10 .
22331 /q -2023 -02 -21 -931.

[20] Brajesh Gupt, Josh Izaac, Nicolás Quesada, J. Open Sour. Softw. 4 (44) (2019)
1705.

[21] Nicolas Heurtel, Shane Mansfield, Jean Senellart, Benoît Valiron, in: Proceed-
ings of the 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE), 2022, pp. 577–581.

[22] Beng Yee Gan, Daniel Leykam, Dimitris G. Angelakis, EPJ Quantum Technol.
9 (1) (2022), https://doi .org /10 .1140 /epjqt /s40507 -022 -00135 -0.

[23] Pieter Kok, W.J. Munro, Kae Nemoto, T.C. Ralph, Jonathan P. Dowling, G.J. Mil-
burn, Rev. Mod. Phys. 79 (2007) 135–174, https://doi .org /10 .1103 /RevModPhys .
79 .135.

[24] Pieter Kok, Brendon W. Lovett, Introduction to Optical Quantum Information
Processing, Cambridge University Press, ISBN 9781139193658, 2010.

[25] William Feller, An Introduction to Probability Theory and Its Applications, vol.
1, Wiley, ISBN 0471257087, 1968.

[26] Michael Reck, Anton Zeilinger, Herbert J. Bernstein, Philip Bertani, Phys. Rev.
Lett. 73 (1994) 58–61, https://doi .org /10 .1103 /PhysRevLett .73 .58.

[27] Eduardo R. Caianiello, Nuovo Cimento (Italy) divided into Nuovo Cimento A,
Nuovo Cimento B 10 (1953), https://doi .org /10 .1007 /BF02781659.

[28] Scott Aaronson, Proc. R. Soc. A, Math. Phys. Eng. Sci. 467 (2136) (2011)
3393–3405, https://doi .org /10 .1098 /rspa .2011.0232.

[29] Daniel Grier, Luke Schaeffer, in: Rocco A. Servedio (Ed.), 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA,
in: LIPIcs, vol. 102, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
pp. 19:1–19:29.

[30] Albert Nijenhuis, Herbert S. Will, Combinatorial Algorithms for Computers and
Calculators, Academic Press, 1978.

[31] F.V. Gubarev, I.V. Dyakonov, M.Yu. Saygin, G.I. Struchalin, S.S. Straupe, S.P. Kulik,
Phys. Rev. A 102 (2020) 012604, https://doi .org /10 .1103 /PhysRevA.102 .012604.

[32] Andrea Olivo, Frédéric Grosshans, Phys. Rev. A 98 (4) (2018), https://doi .org /10 .
1103 /physreva .98 .042323.

[33] Benjamin Villalonga, Murphy Yuezhen Niu, Li Li, Hartmut Neven, John C. Platt,
Vadim N. Smelyanskiy, Sergio Boixo, Efficient approximation of experimental
Gaussian boson sampling, Available as arXiv:2109 .11525, 2021.

[34] Mattia Walschaers, Jack Kuipers, Juan-Diego Urbina, Klaus Mayer, Malte
Christopher Tichy, Klaus Richter, Andreas Buchleitner, New J. Phys. 18 (3)
(2016) 032001, https://doi .org /10 .1088 /1367 -2630 /18 /3 /032001.

[35] Valery Shchesnovich, Quantum 5 (2021) 423, https://doi .org /10 .22331 /q -2021 -
03 -29 -423.

[36] Valery Shchesnovich, Boson sampling cannot be faithfully simulated by only
the lower-order multi-boson interferences, Available as arXiv:2204 .07792,
2022.

[37] T.C. Ralph, N.K. Langford, T.B. Bell, A.G. White, Phys. Rev. A 65 (2002) 062324,
https://doi .org /10 .1103 /PhysRevA.65 .062324.

[38] E. Knill, Phys. Rev. A 66 (2002) 052306, https://doi .org /10 .1103 /PhysRevA.66 .
052306.

[39] Mike Earnest, Extended stars-and-bars problem (where the upper limit of the
variable is bounded), Mathematics Stack Exchange, https://math .stackexchange .
com /q /3182858.

[40] Adrien Cassagne, Olivier Aumage, Denis Barthou, Camille Leroux, Christophe
Jégo, in: Proceedings of the 2018 4th Workshop on Programming Models for
SIMD/Vector Processing, 2018, pp. 1–8.

[41] Roger Fletcher, Practical Methods of Optimization, John Wiley & Sons, 2013.
13

https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1038/35051009
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibDC45AC63BF03E6514C7E3FE5DB48CA9Cs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibDC45AC63BF03E6514C7E3FE5DB48CA9Cs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibDC45AC63BF03E6514C7E3FE5DB48CA9Cs1
https://doi.org/10.1016/0304-3975(79)90044-6
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibD93D305EAC4D571651E8E7A1C81DA2B1s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibD93D305EAC4D571651E8E7A1C81DA2B1s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC54C103CD02ECC707E2D7506A06DF89As1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC54C103CD02ECC707E2D7506A06DF89As1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC54C103CD02ECC707E2D7506A06DF89As1
https://doi.org/10.1016/j.ejc.2010.01.010
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibEC8E47F9C20194E7CFA2ABDC4DC9DC97s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibEC8E47F9C20194E7CFA2ABDC4DC9DC97s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibEC8E47F9C20194E7CFA2ABDC4DC9DC97s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib56A1F31C627ECCBEAAF223A91F65B1B3s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib56A1F31C627ECCBEAAF223A91F65B1B3s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib3135B568B9CE011A3CB5F44B8CD93738s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib3135B568B9CE011A3CB5F44B8CD93738s1
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib10015AE92D3406D926E3AC625FACF205s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib10015AE92D3406D926E3AC625FACF205s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibD05B93714A2E3BAC8F7FAA5E06DB3AA4s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibD05B93714A2E3BAC8F7FAA5E06DB3AA4s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibD05B93714A2E3BAC8F7FAA5E06DB3AA4s1
https://doi.org/10.1140/epjqt/s40507-022-00135-0
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibFE380D598CE16E0AB98DC75EA7FBD3F6s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibFE380D598CE16E0AB98DC75EA7FBD3F6s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib3EE856BBDC54326338D4FA7ABFD6B0EAs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib3EE856BBDC54326338D4FA7ABFD6B0EAs1
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1007/BF02781659
https://doi.org/10.1098/rspa.2011.0232
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC20873F0FF0590F404E8D9EABB5709D8s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC20873F0FF0590F404E8D9EABB5709D8s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC20873F0FF0590F404E8D9EABB5709D8s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibC20873F0FF0590F404E8D9EABB5709D8s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib4D2F75C788FCD1AFC2A8262166AA3CC7s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bib4D2F75C788FCD1AFC2A8262166AA3CC7s1
https://doi.org/10.1103/PhysRevA.102.012604
https://doi.org/10.1103/physreva.98.042323
https://doi.org/10.1103/physreva.98.042323
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE73D991FBDE5AA833A99F4DD331F0BE7s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE73D991FBDE5AA833A99F4DD331F0BE7s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE73D991FBDE5AA833A99F4DD331F0BE7s1
https://doi.org/10.1088/1367-2630/18/3/032001
https://doi.org/10.22331/q-2021-03-29-423
https://doi.org/10.22331/q-2021-03-29-423
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE01C8CBAF88AE6104AC184E6F193D465s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE01C8CBAF88AE6104AC184E6F193D465s1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibE01C8CBAF88AE6104AC184E6F193D465s1
https://doi.org/10.1103/PhysRevA.65.062324
https://doi.org/10.1103/PhysRevA.66.052306
https://doi.org/10.1103/PhysRevA.66.052306
https://math.stackexchange.com/q/3182858
https://math.stackexchange.com/q/3182858
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibF978C9C087B87F1ABA620E58D6E0CCCCs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibF978C9C087B87F1ABA620E58D6E0CCCCs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibF978C9C087B87F1ABA620E58D6E0CCCCs1
http://refhub.elsevier.com/S0010-4655(23)00193-5/bibED7FA12F9D41A9A813D689AC73AB996Bs1

	Strong simulation of linear optical processes
	1 Introduction
	2 Simulating linear optical circuits
	2.1 Formalism of linear optical circuits and notation
	2.2 Hardness of linear optical simulations
	2.3 Weak and strong simulation
	2.4 SLOS problems: two strong linear optical simulation problems

	3 SLOS algorithms
	3.1 SLOS_full: computation of the full output distribution of one input
	3.2 SLOS_gen: computation of several outputs for several inputs
	3.2.1 Restriction of the subcomputation space: mask
	3.2.2 The SLOS_gen algorithm
	Several inputs
	Example
	Complexity of SLOS_gen

	3.2.3 Limit case with one output/one input
	Conjugate trick
	Worst case
	General case
	Average case
	Memory complexity

	3.3 SLOS_hyb: general procedure for both weak and strong simulations

	4 Implementation
	4.1 Memory structures
	4.2 Implementation optimization
	4.3 Masking

	5 Performance
	5.1 A typical QML application requiring strong simulation
	5.2 Benchmarking SLOS_gen for one output
	5.3 Memory usage

	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

